Pengxiang Qu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1369411/publications.pdf

Version: 2024-02-01

933447 940533 18 356 10 16 citations h-index g-index papers 18 18 18 461 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Current Progress and Prospects in Rabbit Cloning. Cellular Reprogramming, 2022, 24, 63-70.	0.9	1
2	Sperm-borne miR-202 targets <i>SEPT7</i> and regulates first cleavage of bovine embryos via cytoskeletal remodeling. Development (Cambridge), 2021, 148, .	2.5	14
3	Sperm-borne small RNAs improve the developmental competence of pre-implantation cloned embryos in rabbit. Zygote, 2021, 29, 331-336.	1.1	9
4	Effects of changing culture medium on preimplantation embryo development in rabbit. Zygote, 2021, , $1\text{-}6$.	1.1	2
5	Extracellular vesicles and melatonin benefit embryonic develop by regulating reactive oxygen species and 5â€methylcytosine. Journal of Pineal Research, 2020, 68, e12635.	7.4	24
6	Melatonin Protects Rabbit Somatic Cell Nuclear Transfer (SCNT) Embryos from Electrofusion Damage. Scientific Reports, 2020, 10, 2186.	3.3	15
7	Insights into the roles of sperm in animal cloning. Stem Cell Research and Therapy, 2020, 11, 65.	5.5	14
8	Use of oocytes selected by brilliant cresyl blue staining enhances rabbit cloned embryo development <i>in vitro</i> . Zygote, 2019, 27, 166-172.	1.1	9
9	Sperm-borne small RNAs regulate α-tubulin acetylation and epigenetic modification of early bovine somatic cell nuclear transfer embryos. Molecular Human Reproduction, 2019, 25, 471-482.	2.8	13
10	Extracellular vesicles derived from donor oviduct fluid improved birth rates after embryo transfer in mice. Reproduction, Fertility and Development, 2019, 31, 324.	0.4	46
11	Tauroursodeoxycholic acid (TUDCA) alleviates endoplasmic reticulum stress of nuclear donor cells under serum starvation. PLoS ONE, 2018, 13, e0196785.	2.5	31
12	Sperm-borne miR-449b influences cleavage, epigenetic reprogramming and apoptosis of SCNT embryos in bovine. Scientific Reports, 2017, 7, 13403.	3.3	48
13	MicroRNA-125b is a key epigenetic regulatory factor that promotes nuclear transfer reprogramming. Journal of Biological Chemistry, 2017, 292, 15916-15926.	3.4	39
14	Effects of embryo-derived exosomes on the development of bovine cloned embryos. PLoS ONE, 2017, 12, e0174535.	2.5	80
15	Isolation of Bovine Skin-Derived Precursor Cells and Their Developmental Potential After Nuclear Transfer. Cellular Reprogramming, 2016, 18, 411-418.	0.9	4
16	Effects of Insulin-like Growth Factor-1 on Development of Somatic Cell Cloned Bovine Embryos. Cellular Reprogramming, 2016, 18, 162-170.	0.9	5
17	Loss of Renewal of Extracellular Vesicles: Harmful Effects on Embryo Development in vitro. International Journal of Nanomedicine, 0, Volume 17, 2301-2318.	6.7	2
18	Spermâ€borne proteins improve rabbit cloning efficiency via regulating embryonic cleavage and epigenetics. Proteomics, 0, , 2200020.	2.2	0