Frédéric Rieux-Laucat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1369358/publications.pdf

Version: 2024-02-01

160 papers 18,063 citations

59
h-index

127 g-index

169 all docs

169
docs citations

times ranked

169

23872 citing authors

#	Article	IF	CITATIONS
1	Long term follow-up of pediatric-onset Evans syndrome: broad immunopathological manifestations and high treatment burden. Haematologica, 2022, 107, 457-466.	1.7	9
2	Abatacept is useful in autoimmune cytopenia with immunopathologic manifestations caused by CTLA-4 defects. Blood, 2022, 139, 300-304.	0.6	8
3	Severe COVID-19 is associated with hyperactivation of the alternative complement pathway. Journal of Allergy and Clinical Immunology, 2022, 149, 550-556.e2.	1.5	25
4	Integrative genetic and immune cell analysis of plasma proteins in healthy donors identifies novel associations involving primary immune deficiency genes. Genome Medicine, 2022, 14, 28.	3.6	8
5	Gain-of-function <i>IKZF1</i> variants in humans cause immune dysregulation associated with abnormal T/B cell late differentiation. Science Immunology, 2022, 7, eabi7160.	5.6	27
6	Identification of germline monoallelic mutations in <i>IKZF2</i> in patients with immune dysregulation. Blood Advances, 2022, 6, 2444-2451.	2.5	18
7	Early IFNÎ 2 secretion determines variable downstream IL-12p70 responses upon TLR4 activation. Cell Reports, 2022, 39, 110989.	2.9	4
8	Clonal hematopoiesis is not significantly associated with COVID-19 disease severity. Blood, 2022, 140, 1650-1655.	0.6	10
9	Improving the diagnostic efficiency of primary immunodeficiencies with targeted next-generation sequencing. Journal of Allergy and Clinical Immunology, 2021, 147, 734-737.	1.5	17
10	Overview of STING-Associated Vasculopathy with Onset in Infancy (SAVI) Among 21 Patients. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 803-818.e11.	2.0	98
11	Generation of an iPSC line (IMAGINi011-A) from a patient carrying a STING mutation. Stem Cell Research, 2021, 50, 102107.	0.3	2
12	Life-Saving, Dose-Adjusted, Targeted Therapy in a Patient with a STAT3 Gain-of-Function Mutation. Journal of Clinical Immunology, 2021, 41, 807-810.	2.0	10
13	Single-cell analysis of FOXP3 deficiencies in humans and mice unmasks intrinsic and extrinsic CD4+ T cell perturbations. Nature Immunology, 2021, 22, 607-619.	7.0	35
14	Next Generation Sequencing for Detecting Somatic FAS Mutations in Patients With Autoimmune Lymphoproliferative Syndrome. Frontiers in Immunology, 2021, 12, 656356.	2.2	12
15	Regulation of the acetylcholine/α7nAChR anti-inflammatory pathway in COVID-19 patients. Scientific Reports, 2021, 11, 11886.	1.6	35
16	RASopathies: From germline mutations to somatic and multigenic diseases. Biomedical Journal, 2021, 44, 422-432.	1.4	28
17	The genetic landscape of the FAS pathway deficiencies. Biomedical Journal, 2021, 44, 388-399.	1.4	16
18	Platelet activation in critically ill COVID-19 patients. Annals of Intensive Care, 2021, 11, 113.	2.2	61

#	Article	IF	Citations
19	Immune checkpoint inhibitors increase T cell immunity during SARS-CoV-2 infection. Science Advances, 2021, 7, .	4.7	27
20	Scaling the tips of the ALPS. Biomedical Journal, 2021, 44, 383-387.	1.4	6
21	NF-κB: At the Borders of Autoimmunity and Inflammation. Frontiers in Immunology, 2021, 12, 716469.	2.2	214
22	A monocyte/dendritic cell molecular signature of SARS-CoV-2-related multisystem inflammatory syndrome in children with severe myocarditis. Med, 2021, 2, 1072-1092.e7.	2.2	38
23	Distinct systemic and mucosal immune responses during acute SARS-CoV-2 infection. Nature Immunology, 2021, 22, 1428-1439.	7.0	110
24	Immunologic evaluation and genetic defects of apoptosis in patients with autoimmune lymphoproliferative syndrome (ALPS). Critical Reviews in Clinical Laboratory Sciences, 2021, 58, 253-274.	2.7	14
25	Type I interferon response and vascular alteration in chilblainâ€like lesions during the COVIDâ€19 outbreak*. British Journal of Dermatology, 2021, 185, 1176-1185.	1.4	33
26	PD-L1 is expressed on human activated naive effector CD4+ T cells. Regulation by dendritic cells and regulatory CD4+ T cells. PLoS ONE, 2021, 16, e0260206.	1.1	6
27	ll y a un fort parallÃ"le entre auto-immunité et cancer. Pourlascience Fr, 2021, N° 531 – janvier, 40-45.	0.0	O
28	Comment on: Monogenic mimics of Behçet's disease in the young. Rheumatology, 2020, 59, e109-e111.	0.9	1
29	Early-onset autoimmunity associated with SOCS1 haploinsufficiency. Nature Communications, 2020, 11, 5341.	5.8	74
30	Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science, 2020, 369, 718-724.	6.0	2,374
31	Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science, 2020, 370, .	6.0	1,983
32	Loss-of-Function Mutation in PTPN2 Causes Aberrant Activation of JAK Signaling Via STAT and Very Early Onset Intestinal Inflammation. Gastroenterology, 2020, 159, 1968-1971.e4.	0.6	20
33	Two neurologic facets of CTLA4-related haploinsufficiency. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	3.1	8
34	Germline TET2 loss of function causes childhood immunodeficiency and lymphoma. Blood, 2020, 136, 1055-1066.	0.6	58
35	STING Gain-of-Function Disrupts Lymph Node Organogenesis and Innate Lymphoid Cell Development in Mice. Cell Reports, 2020, 31, 107771.	2.9	18
36	Autoimmune Lymphoproliferative Syndrome Presenting with Invasive Streptococcus pneumoniae Infection. Journal of Clinical Immunology, 2020, 40, 543-546.	2.0	3

#	Article	IF	CITATIONS
37	After 95†years, it's time to eRASe JMML. Blood Reviews, 2020, 43, 100652.	2.8	14
38	Letter to the Editor: Coexistence of Autoimmune Lymphoproliferative Syndrome and Familial Mediterranean Fever. Iranian Journal of Immunology, 2020, 17, 172-174.	0.4	O
39	Severe combined immunodeficiency in stimulator of interferon genes (STING) V154M/wild-type mice. Journal of Allergy and Clinical Immunology, 2019, 143, 712-725.e5.	1.5	74
40	A 1-Year Prospective French Nationwide Study of Emergency Hospital Admissions in Children and Adults with Primary Immunodeficiency. Journal of Clinical Immunology, 2019, 39, 702-712.	2.0	3
41	Monogenic lupus: Dissecting heterogeneity. Autoimmunity Reviews, 2019, 18, 102361.	2.5	74
42	Life-threatening pulmonary interstitial lung disease complicating pediatric nonhumoral immunodeficiencies. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 2456-2458.e4.	2.0	0
43	Neurological Involvement in Childhood Evans Syndrome. Journal of Clinical Immunology, 2019, 39, 171-181.	2.0	6
44	The European Society for Immunodeficiencies (ESID) Registry Working Definitions for the ClinicalÂDiagnosis of Inborn Errors of Immunity. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 1763-1770.	2.0	381
45	Pediatric Evans syndrome is associated with a high frequency of potentially damaging variants in immune genes. Blood, 2019, 134, 9-21.	0.6	102
46	Fatal Hypogammaglobulinemia 3 Years after Rituximab in a Patient with Immune Thrombocytopenia: An Underlying Genetic Predisposition?. Case Reports in Immunology, 2019, 2019, 1-6.	0.2	5
47	<scp>FAS</scp> and <scp>RAS</scp> related Apoptosis defects: From autoimmunity to leukemia. Immunological Reviews, 2019, 287, 50-61.	2.8	49
48	Monitoring Disease Activity in Systemic Lupus Erythematosus With Singleâ€Molecule Array Digital Enzymeâ€Linked Immunosorbent Assay Quantification of Serum Interferonâ€L±. Arthritis and Rheumatology, 2019, 71, 756-765.	2.9	51
49	Genetic diagnosis of primary immunodeficiencies: AÂsurvey of the French national registry. Journal of Allergy and Clinical Immunology, 2019, 143, 1646-1649.e10.	1.5	20
50	Inherited Immunodeficiency: A New Association With Early-Onset Childhood Panniculitis. Pediatrics, 2018, 141, S496-S500.	1.0	24
51	Long-term follow-up of IPEX syndrome patients after different therapeutic strategies: An international multicenter retrospective study. Journal of Allergy and Clinical Immunology, 2018, 141, 1036-1049.e5.	1.5	233
52	ORAI1 mutations abolishing store-operated Ca2+ entry cause anhidrotic ectodermal dysplasia with immunodeficiency. Journal of Allergy and Clinical Immunology, 2018, 142, 1297-1310.e11.	1.5	62
53	Pediatric-onset Evans syndrome: Heterogeneous presentation and high frequency of monogenic disorders including LRBA and CTLA4 mutations. Clinical Immunology, 2018, 188, 52-57.	1.4	53
54	Copy number variations and founder effect underlying complete IL- $10R\hat{l}^2$ deficiency in Portuguese kindreds. PLoS ONE, 2018, 13, e0205826.	1.1	13

#	Article	IF	CITATIONS
55	Clinical Heterogeneity of Immune Dysregulation, Polyendocrinopathy, Enteropathy, X-Linked Syndrome: A French Multicenter Retrospective Study. Clinical and Translational Gastroenterology, 2018, 9, e201.	1.3	35
56	Chronic granulomatous skin lesions leading to a diagnosis of <scp>TAP</scp> 1 deficiency syndrome. Pediatric Dermatology, 2018, 35, e375-e377.	0.5	11
57	Diagnostic Yield of Next-generation Sequencing in Very Early-onset Inflammatory Bowel Diseases: A Multicentre Study. Journal of Crohn's and Colitis, 2018, 12, 1104-1112.	0.6	68
58	Autoimmune Lymphoproliferative Syndrome-FAS Patients Have an Abnormal Regulatory T Cell (Treg) Phenotype but Display Normal Natural Treg-Suppressive Function on T Cell Proliferation. Frontiers in Immunology, 2018, 9, 718.	2.2	13
59	The Autoimmune Lymphoproliferative Syndrome with Defective FAS or FAS-Ligand Functions. Journal of Clinical Immunology, 2018, 38, 558-568.	2.0	61
60	Disease-associated mutations identify a novel region in human STING necessary for the control of type I interferon signaling. Journal of Allergy and Clinical Immunology, 2017, 140, 543-552.e5.	1.5	159
61	In Vitro Evaluation of the Apoptosis Function in Human Activated T Cells. Methods in Molecular Biology, 2017, 1557, 33-40.	0.4	5
62	Evolution of disease activity and biomarkers on and off rapamycin in 28 patients with autoimmune lymphoproliferative syndrome. Haematologica, 2017, 102, e52-e56.	1.7	49
63	Autoimmune and inflammatory manifestations occur frequently in patients with primary immunodeficiencies. Journal of Allergy and Clinical Immunology, 2017, 140, 1388-1393.e8.	1.5	222
64	Deficiency in Mucosaâ€associated Lymphoid Tissue Lymphoma Translocation 1. Journal of Pediatric Gastroenterology and Nutrition, 2017, 64, 378-384.	0.9	69
65	Detection of interferon alpha protein reveals differential levels and cellular sources in disease. Journal of Experimental Medicine, 2017, 214, 1547-1555.	4.2	288
66	Intrinsic antiproliferative activity of the innate sensor STING in T lymphocytes. Journal of Experimental Medicine, 2017, 214, 1769-1785.	4.2	202
67	Familial and syndromic lupus share the same phenotype as other early-onset forms of lupus. Joint Bone Spine, 2017, 84, 589-593.	0.8	7
68	What's up in the ALPS. Current Opinion in Immunology, 2017, 49, 79-86.	2.4	34
69	Neutropenia in Patients with Common Variable Immunodeficiency: a Rare Event Associated with Severe Outcome. Journal of Clinical Immunology, 2017, 37, 715-726.	2.0	11
70	Clinical spectrum and features of activated phosphoinositide 3-kinase δ syndrome: AÂlarge patient cohort study. Journal of Allergy and Clinical Immunology, 2017, 139, 597-606.e4.	1.5	377
71	Type I interferon-mediated autoinflammation due to DNase II deficiency. Nature Communications, 2017, 8, 2176.	5.8	164
72	Lymphadenopathy driven by TCR-V \hat{i}^3 8V \hat{i}^2 1 T-cell expansion in FAS-related autoimmune lymphoproliferative syndrome. Blood Advances, 2017, 1, 1101-1106.	2.5	3

#	Article	lF	Citations
73	Apoptosis-Related Autoimmune Lymphoproliferative Syndrome. , 2016, , 426-435.		O
74	Atypical Manifestation of LPS-Responsive Beige-Like Anchor Deficiency Syndrome as an Autoimmune Endocrine Disorder without Enteropathy and Immunodeficiency. Frontiers in Pediatrics, 2016, 4, 98.	0.9	18
75	560. Generation of Functional Regulatory T Cells by FOXP3 Gene Transfer into CD4 T Cell from IPEX Patients. Molecular Therapy, 2016, 24, S224.	3.7	О
76	LRBA deficiency with autoimmunity and early onset chronic erosive polyarthritis. Clinical Immunology, 2016, 168, 88-93.	1.4	57
77	X-linked primary immunodeficiency associated with hemizygous mutations in the moesin (MSN) gene. Journal of Allergy and Clinical Immunology, 2016, 138, 1681-1689.e8.	1.5	60
78	Efficacy of the Janus kinase $1/2$ inhibitor ruxolitinib in the treatment of vasculopathy associated with TMEM173 -activating mutations in 3 children. Journal of Allergy and Clinical Immunology, 2016, 138, 1752-1755.	1.5	192
79	Severe Pulmonary Fibrosis as the First Manifestation of Interferonopathy (TMEM173 Mutation). Chest, 2016, 150, e65-e71.	0.4	112
80	Generation of Functional Regulatory T Cells By FOXP3 Gene Transfer into CD4 T Cells from Scurfy Mice and IPEX Patients. Blood, 2016, 128, 2526-2526.	0.6	2
81	Gray platelet syndrome can mimic autoimmune lymphoproliferative syndrome. Blood, 2015, 126, 1967-1969.	0.6	21
82	VPS33B regulates protein sorting into and maturation of \hat{l}_{\pm} -granule progenitor organelles in mouse megakaryocytes. Blood, 2015, 126, 133-143.	0.6	56
83	Evans Syndrome in Children: Long-Term Outcome in a Prospective French National Observational Cohort. Frontiers in Pediatrics, 2015, 3, 79.	0.9	49
84	Stimulator of Interferon Genes–Associated Vasculopathy With Onset in Infancy. JAMA Dermatology, 2015, 151, 872.	2.0	108
85	Early-onset hypogammaglobulinemia: A survey of 44 patients. Journal of Allergy and Clinical Immunology, 2015, 136, 1097-1099.e2.	1.5	5
86	Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations. Journal of Clinical Investigation, 2014, 124, 5516-5520.	3.9	435
87	Immune deficiency–related enteropathy-lymphocytopenia-alopecia syndrome results from tetratricopeptide repeat domain 7A deficiency. Journal of Allergy and Clinical Immunology, 2014, 134, 1354-1364.e6.	1.5	66
88	Autoimmunity by haploinsufficiency. Science, 2014, 345, 1560-1561.	6.0	64
89	RAS-associated lymphoproliferative disease evolves into severe juvenile myelo-monocytic leukemia. Blood, 2014, 123, 1960-1963.	0.6	41
90	Defective anti-polysaccharide response and splenic marginal zone disorganization in ALPS patients. Blood, 2014, 124, 1597-1609.	0.6	48

#	Article	IF	Citations
91	Live and let die at TEMRA. Blood, 2014, 124, 828-830.	0.6	4
92	Are RASopathies new monogenic predisposing conditions to the development of systemic lupus erythematosus? Case report and systematic review of the literature. Seminars in Arthritis and Rheumatism, 2013, 43, 217-219.	1.6	47
93	Investigation of common variable immunodeficiency patients and healthy individuals using autoimmune lymphoproliferative syndrome biomarkers. Human Immunology, 2013, 74, 1531-1535.	1.2	8
94	A Mendelian predisposition to B-cell lymphoma caused by IL-10R deficiency. Blood, 2013, 122, 3713-3722.	0.6	116
95	Autoimmune lymphoproliferative syndrome caused by a homozygous null FAS ligand (FASLG) mutation. Journal of Allergy and Clinical Immunology, 2013, 131, 486-490.	1.5	50
96	Somatic loss of heterozygosity, but not haploinsufficiency alone, leads to full-blown autoimmune lymphoproliferative syndrome in 1 of 12 family members with FAS start codon mutation. Clinical Immunology, 2013 , 147 , 61 - 68 .	1.4	20
97	Phenotypic Characterization of Very Early-onset IBD Due to Mutations in the IL10, IL10 Receptor Alpha or Beta Gene. Inflammatory Bowel Diseases, 2013, 19, 2820-2828.	0.9	80
98	Diagnosis of autoimmune lymphoproliferative syndrome caused by FAS deficiency in adults. Haematologica, 2013, 98, 389-392.	1.7	25
99	MST1 mutations in autosomal recessive primary immunodeficiency characterized by defective naive T-cell survival. Blood, 2012, 119, 3458-3468.	0.6	244
100	FAS/FAS-L dependent killing of activated human monocytes and macrophages by CD4+CD25â^' responder T cells, but not CD4+CD25+ regulatory T cells. Journal of Autoimmunity, 2012, 38, 29-38.	3.0	24
101	Primary T-cell immunodeficiency with immunodysregulation caused by autosomal recessive LCK deficiency. Journal of Allergy and Clinical Immunology, 2012, 130, 1144-1152.e11.	1.5	96
102	Defective IL10 Signaling Defining a Subgroup of Patients With Inflammatory Bowel Disease. American Journal of Gastroenterology, 2011, 106, 1544-1555.	0.2	232
103	A survey of 90 patients with autoimmune lymphoproliferative syndrome related to TNFRSF6 mutation. Blood, 2011, 118, 4798-4807.	0.6	153
104	Onset of autoimmune lymphoproliferative syndrome (ALPS) in humans as a consequence of genetic defect accumulation. Journal of Clinical Investigation, 2011, 121, 106-112.	3.9	110
105	Tartrate-resistant acid phosphatase deficiency causes a bone dysplasia with autoimmunity and a type I interferon expression signature. Nature Genetics, 2011, 43, 127-131.	9.4	214
106	Activation-induced cytidine deaminase (AID) is required for B-cell tolerance in humans. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11554-11559.	3.3	118
107	Autoimmune lymphoproliferative syndrome: a multifactorial disorder. Haematologica, 2010, 95, 1805-1807.	1.7	35
108	Whole-Exome-Sequencing-Based Discovery of Human FADD Deficiency. American Journal of Human Genetics, 2010, 87, 873-881.	2.6	171

#	Article	IF	Citations
109	Expression of the HLA-C2-specific activating killer-cell Ig-like receptor KIR2DS1 on NK and T cells. Clinical Immunology, 2010, 135, 26-32.	1.4	19
110	Accessory spleen: Differential diagnosis for lymphoma in autoimmune lymphoproliferative syndrome. Pediatric Blood and Cancer, 2010, 54, 1020-1022.	0.8	О
111	Revised diagnostic criteria and classification for the autoimmune lymphoproliferative syndrome (ALPS): report from the 2009 NIH International Workshop. Blood, 2010, 116, e35-e40.	0.6	405
112	Reduced Expression of FOXP3 and Regulatory T-Cell Function in Severe Forms of Early-onset Autoimmune Enteropathy. Gastroenterology, 2010, 139, 770-778.	0.6	88
113	Efficacy of Gene Therapy for X-Linked Severe Combined Immunodeficiency. New England Journal of Medicine, 2010, 363, 355-364.	13.9	561
114	<i>STIM1</i> Mutation Associated with a Syndrome of Immunodeficiency and Autoimmunity. New England Journal of Medicine, 2009, 360, 1971-1980.	13.9	459
115	Hypomorphic mutation of <i>ZAP70</i> in human results in a late onset immunodeficiency and no autoimmunity. European Journal of Immunology, 2009, 39, 1966-1976.	1.6	88
116	Cutaneous manifestations of immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome. British Journal of Dermatology, 2009, 160, 645-651.	1.4	110
117	Digestive histopathological presentation of IPEX syndrome. Modern Pathology, 2009, 22, 95-102.	2.9	158
118	Human adenylate kinase 2 deficiency causes a profound hematopoietic defect associated with sensorineural deafness. Nature Genetics, 2009, 41, 106-111.	9.4	198
119	FAS-L, IL-10, and double-negative CD4â^'CD8â^' TCR $\hat{l}\pm\hat{l}^2+$ T cells are reliable markers of autoimmune lymphoproliferative syndrome (ALPS) associated with FAS loss of function. Blood, 2009, 113, 3027-3030.	0.6	134
120	Human Adenylate Kinase 2 Deficiency Inhibits Hematopoietic Cell Differentiation towards Neutrophil and T Lymphoid Lineages Blood, 2009, 114, 78-78.	0.6	0
121	MHCâ€restricted T cell receptor signaling is required for αβ TCR replacement of the pre T cell receptor. European Journal of Immunology, 2008, 38, 391-399.	1.6	4
122	Human TCR \hat{l} ±/ \hat{l} ² + CD4 \hat{a} -CD8 \hat{a} -Double-Negative T Cells in Patients with Autoimmune Lymphoproliferative Syndrome Express Restricted V \hat{l} ² TCR Diversity and Are Clonally Related to CD8+ T Cells. Journal of Immunology, 2008, 181, 440-448.	0.4	70
123	Clinical and molecular aspects of autoimmune enteropathy and immune dysregulation, polyendocrinopathy autoimmune enteropathy X-linked syndrome. Current Opinion in Gastroenterology, 2008, 24, 742-748.	1.0	42
124	Overexpression of the antiapoptotic gene Bfl-1 in B cells from patients with familial systemic lupus erythematosus. Lupus, 2007, 16, 95-100.	0.8	21
125	Perforin-dependent apoptosis functionally compensates Fas deficiency in activation-induced cell death of human T lymphocytes. Blood, 2007, 110, 4285-4292.	0.6	34
126	Severe Food Allergy as a Variant of IPEX Syndrome Caused by a Deletion in a Noncoding Region of the FOXP3 Gene. Gastroenterology, 2007, 132, 1705-1717.	0.6	236

#	Article	IF	CITATIONS
127	Long-term immune reconstitution in RAG-1-deficient mice treated by retroviral gene therapy: a balance between efficiency and toxicity. Blood, 2006, 107, 63-72.	0.6	64
128	Mycophenolate Mofetil as an Alternate Immunosuppressor for Autoimmune Lymphoproliferative Syndrome. Journal of Pediatric Hematology/Oncology, 2006, 28, 824-826.	0.3	20
129	XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature, 2006, 444, 110-114.	13.7	649
130	Inherited and SomaticCD3ζ Mutations in a Patient with T-Cell Deficiency. New England Journal of Medicine, 2006, 354, 1913-1921.	13.9	111
131	Autoimmune Lymphoproliferative Syndrome and Perforin. New England Journal of Medicine, 2005, 352, 306-307.	13.9	15
132	Inherited and Acquired Death Receptor Defects in Human Autoimmune Lymphoproliferative Syndrome., 2005, 9, 18-36.		22
133	Induction of T lymphocyte apoptosis by sulphasalazine in patients with Crohn's disease. Gut, 2004, 53, 1632-1638.	6.1	89
134	Childhood linear IgA disease in association with autoimmune lymphoproliferative syndrome. British Journal of Dermatology, 2004, 150, 578-580.	1.4	20
135	Expression of Granzyme B in viral hepatitis in patients with ALPS. Hepatology, 2004, 39, 864-865.	3.6	5
136	Autoimmune Lymphoproliferative Syndrome with SomaticFasMutations. New England Journal of Medicine, 2004, 351, 1409-1418.	13.9	276
137	Characterization of antigen-specific repertoire diversity following in vitro restimulation by a recombinant adenovirus expressing human cytomegalovirus pp65. European Journal of Immunology, 2003, 33, 760-768.	1.6	15
138	Cell-death signaling and human disease. Current Opinion in Immunology, 2003, 15, 325-331.	2.4	117
139	Autoimmune lymphoproliferative syndromes: genetic defects of apoptosis pathways. Cell Death and Differentiation, 2003, 10, 124-133.	5.0	215
140	Failure of HY-Specific Thymocytes to Escape Negative Selection by Receptor Editing. Immunity, 2002, 16, 707-718.	6.6	64
141	Differential sensitivity of Jurkat and primary T cells to caspase-independent cell death triggered upon Fas stimulation. European Journal of Immunology, 2002, 32, 2376.	1.6	13
142	Inactivation of the Fas gene by Alu insertion: retrotransposition in an intron causing splicing variation and autoimmune lymphoproliferative syndrome. Genes and Immunity, 2002, 3, S66-S70.	2.2	38
143	Diffuse large B-cell non-Hodgkin's lymphoma in a patient with autoimmune lymphoproliferative syndrome. British Journal of Haematology, 2001, 113, 432-434.	1.2	20
144	Dyserythropoiesis associated with a Fas-deficient condition in childhood. British Journal of Haematology, 2000, 108, 300-304.	1.2	30

#	Article	IF	Citations
145	Cytomegalovirus infection in infants with autoimmune lymphoproliferative syndrome (ALPS). Clinical and Experimental Immunology, 2000, 121, 353-357.	1.1	12
146	A new peak in the ALPS. Nature Medicine, 1999, 5, 876-877.	15.2	5
147	Lymphoproliferative syndrome with autoimmunity: A possible genetic basis for dominant expression of the clinical manifestations. Blood, 1999, 94, 2575-82.	0.6	122
148	Clinical effects of mutations to CD95 (Fas): relevance to autoimmunity?. Seminars in Immunopathology, 1998, 19, 301-310.	4.0	5
149	Highly restricted human T cell repertoire in peripheral blood and tissue-infiltrating lymphocytes in Omenn's syndrome Journal of Clinical Investigation, 1998, 102, 312-321.	3.9	79
150	NATURALLY OCCURRING PRIMARY DEFICIENCIES OF THE IMMUNE SYSTEM. Annual Review of Immunology, 1997, 15, 93-124.	9.5	157
151	Correction of Fas (CD95) deficiency by haploidentical bone marrow transplantation. European Journal of Immunology, 1997, 27, 2043-2047.	1.6	51
152	Clinical, immunological, and pathological consequences of Fas-deficient conditions. Lancet, The, 1996, 348, 719-723.	6.3	191
153	Significance of Interdigitating Reticulum Cells in Omenn's Syndrome. American Journal of Surgical Pathology, 1996, 20, 1032.	2.1	3
154	T cell activation deficiencies. Clinical Immunology and Immunopathology, 1995, 76, S163-S164.	2.1	12
155	CD34-positive early human thymocytes: T cell receptor and cytokine receptor gene expression. European Journal of Immunology, 1995, 25, 2471-2478.	1.6	27
156	Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science, 1995, 268, 1347-1349.	6.0	1,221
157	Around the V(D)J recombinase machinery. Research in Immunology, 1994, 145, 151-158.	0.9	1
158	Defective human interleukin 2 receptor gamma chain in an atypical X chromosome-linked severe combined immunodeficiency with peripheral T cells Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 9466-9470.	3.3	99
159	Normal T cell receptor $\hat{Vl^2}$ usage in a primary immunodeficiency associated with HLA class II deficiency. European Journal of Immunology, 1993, 23, 928-934.	1.6	37
160	Lack of selective $\hat{V^2}$ deletion in peripheral CD4+ T cells of human immunodeficiency virus-infected infants. European Journal of Immunology, 1993, 23, 2041-2044.	1.6	26