104

papers

119

all docs

567281

1,114 15
citations h-index
119 119
docs citations times ranked

552781
26

g-index

222

citing authors

10

12

14

16

18

ARTICLE IF CITATIONS

Analysis and Transformation of Constrained Horn Clauses for Program Verification. Theory and
Practice of Logic Programming, 2022, 22, 974-1042.

Removing Algebraic Data Types from Constrained Horn Clauses Using Difference Predicates. Lecture

Notes in Computer Science, 2020, , 83-102. 1.3 8

Solving Horn Clauses on Inductive Data Types Without Induction 4€“ ERRATUM. Theory and Practice of
Logic Programming, 2019, 19, 629.

Semantics and Controllability of Time-Aware Business Processes®. Fundamenta Informaticae, 2019, 165,
205-244. o4 2

Property-Based Test Case Generators for Free. Lecture Notes in Computer Science, 2019, , 186-206.

Predicate Pairing for program verification. Theory and Practice of Logic Programming, 2018, 18, 126-166. 15 9

Solving Horn Clauses on Inductive Data Types Without Induction. Theory and Practice of Logic
Programming, 2018, 18, 452-469.

Predicate Pairing with Abstraction for Relational Verification. Lecture Notes in Computer Science,

2018, , 289-305. 1.3 2

Semantics-based generation of verification conditions via program specialization. Science of
Computer Programming, 2017, 147, 78-108.

Program Verification using Constraint Handling Rules and Array Constraint Generalizations™.

Fundamenta Informaticae, 2017, 150, 73-117. 04 3

Verification of Time-Aware Business Processes Using Constrained Horn Clauses. Lecture Notes in
Computer Science, 2017, , 38-55.

Verifying Controllability of Time-Aware Business Processes. Lecture Notes in Computer Science, 2017, ,

103-118. 1.3 2

Relational Verification Through Horn Clause Transformation. Lecture Notes in Computer Science,
2016, , 147-169.

Proving correctness of imperative programs by linearizing constrained Horn clauses. Theory and

Practice of Logic Programming, 2015, 15, 635-650. L5 15

A Rule-based Verification Strategy for Array Manipulating Programs. Fundamenta Informaticae, 2015,
140, 329-355.

Semantics-based generation of verification conditions by program specialization. , 2015, , . 19

Program verification via iterated specialization. Science of Computer Programming, 2014, 95, 149-175.

VeriMAP: A Tool for Verifying Programs through Transformations. Lecture Notes in Computer

Science, 2014, , 568-574. 1.3 52

ALBERTO PETTOROSSI

ARTICLE IF CITATIONS

Verifying Array Programs by Transforming Verification Conditions. Lecture Notes in Computer

Science, 2014, , 182-202.

20 Verifying programs via iterated specialization. , 2013, , . 11

Controlling Polyvariance for Specialization-based Verification. Fundamenta Informaticae, 2013, 124,
483-502.

22 Proving Theorems by Program Transformation. Fundamenta Informaticae, 2013, 127, 115-134. 0.4 3

Generalization strategies for the verification of infinite state systems. Theory and Practice of Logic
Programming, 2013, 13, 175-199.

Specialization with Constrained Generalization for Software Model Checking. Lecture Notes in

24 Computer Science, 2013, , 51-70.

1.3 4

Synthesizing Concurrent Programs Using Answer Set Programming. Fundamenta Informaticae, 2012,
120, 205-229.

Improving Reachability Analysis of Infinite State Systems by Specialization. Fundamenta Informaticae,

26 H012,119, 281-300.

0.4 8

Constraint-based correctness proofs for logic program transformations. Formal Aspects of
Computing, 2012, 24, 569-594.

Using Real Relaxations during Program Specialization. Lecture Notes in Computer Science, 2012, ,
28 106122, 13 0

Program transformation for development, verification, and synthesis of programs. Intelligenza
Artificiale, 2011, 5, 119-125.

RCRA 2009 Experimental Evaluation of Algorithms for Solving Problems with Combinatorial

30 Explosion. Fundamenta Informaticae, 2011, 107, i-i.

0.4 (0]

Program Specialization for Verifying Infinite State Systems: An Experimental Evaluation. Lecture Notes
in Computer Science, 2011, , 164-183.

Improving Reachability Analysis of Infinite State Systems by Specialization. Lecture Notes in Computer

32 Science, 2011, , 165-179.

1.3 3

Transformations of logic programs on infinite lists. Theory and Practice of Logic Programming, 2010,
10, 383-399.

The Transformational Approach to Program Development. Lecture Notes in Computer Science, 2010, ,
3 112135 13 3

Deciding Full Branching Time Logic by Program Transformation. Lecture Notes in Computer Science,

2010, , 5-21.

36 Advances in Computational Logic (CILCO8). Fundamenta Informaticae, 2009, 96, i-ii. 0.4 0

ALBERTO PETTOROSSI

ARTICLE IF CITATIONS

A Folding Rule for Eliminating Existential Variables from Constraint Logic Programs. Fundamenta

Informaticae, 2009, 96, 373-393.

Totally correct logic program transformations viaAwell-founded annotations. Higher-Order and

38 Symbolic Computation, 2008, 21, 193-234. 03 1

A Folding Algorithm for Eliminating Existential Variables from Constraint Logic Programs. Lecture
Notes in Computer Science, 2008, , 284-300.

Derivation of Efficient Logic Programs by Specialization and Reduction of Nondeterminism. , 2008, ,
40 130177. °

Transformational Verification of Parameterized Protocols Using Array Formulas. Lecture Notes in
Computer Science, 2006, , 23-43.

Proving Properties of Constraint Logic Programs by Eliminating Existential Variables. Lecture Notes in

42 Computer Science, 2006, , 179-195. L3 >

Derivation of Efficient Logic Programs by Specialization and Reduction of Nondeterminism.
Higher-Order and Symbolic Computation, 2005, 18, 121-210.

44 Automatic Proofs of Protocols via Program Transformation. , 2005, , 99-116. 0

A theory of totally correct logic program transformations. , 2004, , .

Transformations of logic programs with goals as arguments. Theory and Practice of Logic

46 Programming, 2004, 4, 495-537. L5 4

Combining Logic Programs and Monadic Second Order Logics by Program Transformation. Lecture
Notes in Computer Science, 2003, , 160-181.

48 The List Introduction Strategy for the Derivation of Logic Programs. Formal Aspects of Computing, 18 4
2002, 13, 233-251. '

Verification of Sets of Infinite State Processes Using Program Transformation. Lecture Notes in
Computer Science, 2002, , 111-128.

50 Program Derivation = Rules + Strategies. Lecture Notes in Computer Science, 2002, , 273-309. 13 7

Automated Strategies for Specializing Constraint Logic Programs. Lecture Notes in Computer Science,
2001, , 125-146.

52 Rules and Strategies for Contextual Specialization of Constraint Logic Programs. Electronic Notes in 0.9 4
Theoretical Computer Science, 2000, 30, 129-144. :

Transformation Rules for Logic Programs with Goals as Arguments. Lecture Notes in Computer

Science, 2000, , 176-195.

Synthesis and transformation of logic programs using unfold/fold proofs. The Journal of Logic

> Pprogramming, 1999, 41, 197-230. L7 36

56

58

60

62

64

66

68

70

72

ALBERTO PETTOROSSI

ARTICLE IF CITATIONS

Program specialization via algorithmic unfold/fold transformations. ACM Computing Surveys, 1998,

30, 6.

Reducing nondeterminism while specializing logic programs. , 1997, , . 16

Enhancing partial deduction via unfold/fold rules. Lecture Notes in Computer Science, 1997, , 146-168.

Future directions in program transformation. ACM SIGPLAN Notices, 1997, 32, 99-102. 0.2 1

Program Derivation via List Introduction. IFIP Advances in Information and Communication
Technology, 1997, , 296-323.

Developing correct and efficient logic programs by transformation. Knowledge Engineering Review, 06 5
1996, 11, 347-360. ’

Rules and strategies for transforming functional and logic programs. ACM Computing Surveys, 1996,
28,360-414.

A comparative revisitation of some program transformation techniques. Lecture Notes in Computer 13 15
Science, 1996, , 355-385. :

A theory of logic program specialization and generalization for dealing with input data properties.
Lecture Notes in Computer Science, 1996, , 386-408.

Future directions in program transformation. ACM Computing Surveys, 1996, 28, 171. 23.0 5

Unfolding-definition-folding, in this order, for avoiding unnecessary variables in logic programs.
Theoretical Computer Science, 1995, 142, 89-124.

Transformation of logic programs: Foundations and techniques. The Journal of Logic Programming, 17 143
1994, 19-20, 261-320. '

Synthesis of Programs from Unfold/Fold Proofs. Workshops in Computing, 1994, , 141-158.

The loop absorption and the Feneralization strategies for the development of logic programs and 17 29
partial deduction. The Journal of Logic Programming, 1993, 16, 123-161. :

Rules and strategies for program transformation. Lecture Notes in Computer Science, 1993, , 263-304.

Best-first Strategies for Incremental Transformations of Logic Programs. Workshops in Computing, 0.4 5
1993,, 82-98.)

An Abstract Strategy for Transforming Logic Programs 1. Fundamenta Informaticae, 1993, 18, 267-286.

The Use of the Tupling Strategy in the Development of Parallel Programs. , 1993, , 111-151. 1

74

76

78

80

82

84

86

88

90

ALBERTO PETTOROSSI

ARTICLE IF CITATIONS

Semantics preserving transformation rules for Prolog. ACM SIGPLAN Notices, 1991, 26, 274-284.

Semantics preserving transformation rules for Prolog. , 1991, , . 15

Unfolding 4€” definition &€” folding, in this order, for avoiding unnecessary variables in logic programs.
Lecture Notes in Computer Science, 1991, , 347-358.

Synthesis of eureka predicates for developing logic programs. Lecture Notes in Computer Science, 13 20
1990, , 306-325. ’

Observers, experiments, and agents: A comprehensive approach to parallelism. Lecture Notes in
Computer Science, 1990, , 375-406.

DERIVATION OF PROGRAMS WHICH TRAVERSE THEIR INPUT DATA ONLY ONCE. , 1989, , 165-184. 4

Higher order generalization in program derivation. , 1987, , 182-196.

Derivation of efficient programs for computing sequences of actions. Theoretical Computer Science, 0.9 4
1987,53,151-167. ’

Enriched categories for local and interaction calculi. Lecture Notes in Computer Science, 1987, , 57-70.

Program development using lambda abstraction. Lecture Notes in Computer Science, 1987, , 420-434. 1.3 9

Transformation strategies for deriving on line programs. , 1986, , 127-141.

Categorical models of process cooperation. Lecture Notes in Computer Science, 1986, , 282-298. 1.3 3

Towers of Hanoi problems: Deriving iterative solutions by program transformations. BIT Numerical
Mathematics, 1985, 25, 327-334.

A methodology for improving parallel programs by adding communications. Lecture Notes in 13 1
Computer Science, 1985, , 228-250. :

Higher-order communications for concurrent programming. Parallel Computing, 1984, 1, 331-336.

A powerful strategy for deriving efficient programs by transformation. , 1984, , . 45

Towards a theory of parallelism and communications for increasing efficiency in applicative

languages. Lecture Notes in Computer Science, 1983, , 224-249.

Deriving very efficient algorithms for evaluating linear recurrence relations using the program

transformation technique. Acta Informatica, 1982, 18, 181. 0.5 20

ALBERTO PETTOROSSI

ARTICLE IF CITATIONS

A property which guarantees termination in weak combinatory logic and subtree replacement

systems.. Notre Dame Journal of Formal Logic, 1981, 22, 344.

92 A transformational approach for developing parallel programs. Lecture Notes in Computer Science, 13 1
1981, , 245-258. :

Comparing and putting together recursive path ordering, simplification orderings and Non-Ascending
Property for termination proofs of term rewriting systems. Lecture Notes in Computer Science, 1981, ,
432-447.

94 AN approach to communications and parallelism in applicative languages. Lecture Notes in Computer 13 o
Science, 1981, , 432-446. :

Derivation of an O(k2 log n) algorithm for computing order-k fibonacci numbers from the O(k3log n)
matrix multiplication method. Information Processing Letters, 1980, 11, 172-179.

926 On subrecursiveness in weak combinatory logic. Lecture Notes in Computer Science, 1975, , 297-311. 1.3 4

Verification of Imperative Programs by Constraint Logic Program Transformation. Electronic
Proceedings in Theoretical Computer Science, EPTCS, 0, 129, 186-210.

Removing Unnecessary Variables from Horn Clause Verification Conditions. Electronic Proceedings in

o8 Theoretical Computer Science, EPTCS, 0, 219, 49-55. 0.8 0

Bounded Symbolic Execution for Runtime Error Detection of Erlang Programs. Electronic
Proceedings in Theoretical Computer Science, EPTCS, 0, 278, 19-26.

Proving Properties of Sorting Programs: A Case Study in Horn Clause Verification. Electronic

100 Proceedings in Theoretical Computer Science, EPTCS, 0, 296, 48-75.

0.8 2

Lemma Generation for Horn Clause Satisfiability: A Preliminary Study. Electronic Proceedings in
Theoretical Computer Science, EPTCS, 0, 299, 4-18.

A Historical Account of My Early Research Interests. Electronic Proceedings in Theoretical Computer

102 giience, EPTCS, 0, 320, 1-28. 0.8 o

Satisfiability of constrained Horn clauses on algebraic data types: A transformation-based approach.

Journal of Logic and Computation, O, , .

Verifying Catamorphism-Based Contracts using Constrained Horn Clauses. Theory and Practice of

104 Logic Programming, O, , 1-18.

15 6

