
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1369005/publications.pdf Version: 2024-02-01

MENCRANLL

#	Article	IF	CITATIONS
1	Perovskite Cathode Materials for Low-Temperature Solid Oxide Fuel Cells: Fundamentals to Optimization. Electrochemical Energy Reviews, 2022, 5, 263-311.	25.5	35
2	Microwave plasma rapid heating towards robust cathode/electrolyte interface for solid oxide fuel cells. Journal of Colloid and Interface Science, 2022, 607, 53-60.	9.4	4
3	Mechanochemically Synthesised Flexible Electrodes Based on Bimetallic Metal–Organic Framework Glasses for the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	41
4	Electrochemical CO2 reduction in membrane-electrode assemblies. CheM, 2022, 8, 663-692.	11.7	86
5	Effects of microporous layer on electrolyte flooding in gas diffusion electrodes and selectivity of CO2 electrolysis to CO. Journal of Power Sources, 2022, 522, 230998.	7.8	31
6	Regulating the reaction zone of electrochemical CO2 reduction on gas-diffusion electrodes by distinctive hydrophilic-hydrophobic catalyst layers. Applied Catalysis B: Environmental, 2022, 310, 121362.	20.2	21
7	CO ₂ Electrolysis via Surface-Engineering Electrografted Pyridines on Silver Catalysts. ACS Catalysis, 2022, 12, 7862-7876.	11.2	21
8	Unveiling the effects of dimensionality of tin oxide-derived catalysts on CO ₂ reduction by using gas-diffusion electrodes. Reaction Chemistry and Engineering, 2021, 6, 345-352.	3.7	20
9	The role of electrode wettability in electrochemical reduction of carbon dioxide. Journal of Materials Chemistry A, 2021, 9, 19369-19409.	10.3	95
10	Gas diffusion electrodes (GDEs) for electrochemical reduction of carbon dioxide, carbon monoxide, and dinitrogen to value-added products: a review. Energy and Environmental Science, 2021, 14, 1959-2008.	30.8	243
11	Mitigating the Agglomeration of Nanofiller in a Mixed Matrix Membrane by Incorporating an Interface Agent. Membranes, 2021, 11, 328.	3.0	9
12	Understanding the Effects of Anion Interactions with Ag Electrodes on Electrochemical CO 2 Reduction in Choline Halide Electrolytes. ChemSusChem, 2021, 14, 2601-2611.	6.8	5
13	Morphology control of metal-organic frameworks by Co-competitive coordination strategy for low-temperature selective catalytic reduction of NO with NH3. Journal of Solid State Chemistry, 2021, 297, 122031.	2.9	10
14	Cobalt Electrochemical Recovery from Lithium Cobalt Oxides in Deep Eutectic Choline Chloride+Urea Solvents. ChemSusChem, 2021, 14, 2972-2983.	6.8	33
15	Highâ€Performance Perovskite Composite Electrocatalysts Enabled by Controllable Interface Engineering. Small, 2021, 17, e2101573.	10.0	128
16	Physicochemical and thermodynamic properties of aqueous blends of 3-aminopropyl triethoxysilane and amines at 298.15–333.15†K. Journal of Molecular Liquids, 2021, 332, 115440.	4.9	4
17	Rupture distance and shape of the liquid bridge with rough surface. Minerals Engineering, 2021, 167, 106888.	4.3	10
18	Shape-tuned electrodeposition of bismuth-based nanosheets on flow-through hollow fiber gas diffusion electrode for high-efficiency CO2 reduction to formate. Applied Catalysis B: Environmental, 2021, 286, 119945.	20.2	77

#	Article	IF	CITATIONS
19	Computational Design and Experimental Validation of the Optimal Bimetal-Doped SrCoO _{3â~î́} Perovskite as Solid Oxide Fuel Cell Cathode. Journal of the American Chemical Society, 2021, 143, 9507-9514.	13.7	48
20	Stand-alone asymmetric hollow fiber gas-diffusion electrodes with distinguished bronze phases for high-efficiency CO2 electrochemical reduction. Applied Catalysis B: Environmental, 2021, 298, 120538.	20.2	35
21	Crystal Facet Engineering of Copper-Based Metal–Organic Frameworks with Inorganic Modulators. Crystal Growth and Design, 2021, 21, 926-934.	3.0	16
22	Cation-Driven Increases of CO ₂ Utilization in a Bipolar Membrane Electrode Assembly for CO ₂ Electrolysis. ACS Energy Letters, 2021, 6, 4291-4298.	17.4	88
23	Catalyst–Electrolyte Interactions in Aqueous Reline Solutions for Highly Selective Electrochemical CO ₂ Reduction. ChemSusChem, 2020, 13, 304-311.	6.8	29
24	Advances and challenges in electrochemical CO ₂ reduction processes: an engineering and design perspective looking beyond new catalyst materials. Journal of Materials Chemistry A, 2020, 8, 1511-1544.	10.3	305
25	Sulfurâ€Modified Oxygen Vacancies in Iron–Cobalt Oxide Nanosheets: Enabling Extremely High Activity of the Oxygen Evolution Reaction to Achieve the Industrial Water Splitting Benchmark. Angewandte Chemie, 2020, 132, 14772-14778.	2.0	89
26	Sulfurâ€Modified Oxygen Vacancies in Iron–Cobalt Oxide Nanosheets: Enabling Extremely High Activity of the Oxygen Evolution Reaction to Achieve the Industrial Water Splitting Benchmark. Angewandte Chemie - International Edition, 2020, 59, 14664-14670.	13.8	178
27	Interfacial engineering of a polymer–MOF composite by <i>in situ</i> vitrification. Chemical Communications, 2020, 56, 3609-3612.	4.1	43
28	Catalyst–Electrolyte Interactions in Aqueous Reline Solutions for Highly Selective Electrochemical CO 2 Reduction. ChemSusChem, 2020, 13, 282-282.	6.8	2
29	Nonstoichiometric perovskite for enhanced catalytic oxidation through excess A-site cation. Chemical Engineering Science, 2020, 219, 115596.	3.8	26
30	Bulk and Surface Properties Regulation of Single/Double Perovskites to Realize Enhanced Oxygen Evolution Reactivity. ChemSusChem, 2020, 13, 3045-3052.	6.8	32
31	Direct evidence of boosted oxygen evolution over perovskite by enhanced lattice oxygen participation. Nature Communications, 2020, 11, 2002.	12.8	366
32	Modulated Sn Oxidation States over a Cu ₂ O-Derived Substrate for Selective Electrochemical CO ₂ Reduction. ACS Applied Materials & Interfaces, 2020, 12, 22760-22770.	8.0	36
33	Toward Excellence of Transition Metalâ€Based Catalysts for CO ₂ Electrochemical Reduction: An Overview of Strategies and Rationales. Small Methods, 2020, 4, 2000033.	8.6	60
34	Tuning the Product Selectivity of the Cu Hollow Fiber Gas Diffusion Electrode for Efficient CO ₂ Reduction to Formate by Controlled Surface Sn Electrodeposition. ACS Applied Materials & Interfaces, 2020, 12, 21670-21681.	8.0	69
35	Modifying Catalyst-Electrolyte Interactions for Enhanced Electrochemical CO2 Reduction. ECS Meeting Abstracts, 2020, MA2020-01, 1518-1518.	0.0	0
36	A Surfactantâ€Free and Scalable General Strategy for Synthesizing Ultrathin Twoâ€Dimensional Metal–Organic Framework Nanosheets for the Oxygen Evolution Reaction. Angewandte Chemie, 2019, 131, 13699-13706.	2.0	64

#	Article	IF	CITATIONS
37	A Surfactantâ€Free and Scalable General Strategy for Synthesizing Ultrathin Twoâ€Dimensional Metal–Organic Framework Nanosheets for the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2019, 58, 13565-13572.	13.8	205
38	Enhancing Oxygen Reduction Reaction Activity and CO ₂ Tolerance of Cathode for Low-Temperature Solid Oxide Fuel Cells by in Situ Formation of Carbonates. ACS Applied Materials & Interfaces, 2019, 11, 26909-26919.	8.0	35
39	Unveiling Lithium Roles in Cobaltâ€Free Cathodes for Efficient Oxygen Reduction Reaction below 600 °C. ChemElectroChem, 2019, 6, 5340-5348.	3.4	8
40	Fine-Tuning the Coordinatively Unsaturated Metal Sites of Metal–Organic Frameworks by Plasma Engraving for Enhanced Electrocatalytic Activity. ACS Applied Materials & Interfaces, 2019, 11, 44300-44307.	8.0	53
41	Sc and Ta-doped SrCoO3-l [^] perovskite as a high-performance cathode for solid oxide fuel cells. Composites Part B: Engineering, 2019, 178, 107491.	12.0	40
42	Evaluation of SrCo0.8Nb0.2O3-δ, SrCo0.8Ta0.2O3-δ and SrCo0.8Nb0.1Ta0.1O3-δ as air electrode materials for solid oxide electrolysis and reversible solid oxide cells. Electrochimica Acta, 2019, 321, 134654.	5.2	10
43	Strontium-doped lanthanum iron nickelate oxide as highly efficient electrocatalysts for oxygen evolution reaction. Journal of Colloid and Interface Science, 2019, 553, 813-819.	9.4	18
44	Defectâ€Induced Pt–Co–Se Coordinated Sites with Highly Asymmetrical Electronic Distribution for Boosting Oxygenâ€Involving Electrocatalysis. Advanced Materials, 2019, 31, e1805581.	21.0	168
45	Use of FTIR, XPS, NMR to characterize oxidative effects of NaClO on coal molecular structures. International Journal of Coal Geology, 2019, 201, 1-13.	5.0	90
46	Orientated growth of copper-based MOF for acetylene storage. Chemical Engineering Journal, 2019, 357, 320-327.	12.7	36
47	Coking-resistant Ce0.8Ni0.2O2-δ internal reforming layer for direct methane solid oxide fuel cells. Electrochimica Acta, 2018, 282, 402-408.	5.2	14
48	Highly CO ₂ -Tolerant Cathode for Intermediate-Temperature Solid Oxide Fuel Cells: Samarium-Doped Ceria-Protected SrCo _{0.85} Ta _{0.15} O _{3â~Î} Hybrid. ACS Applied Materials & Interfaces, 2017, 9, 2326-2333.	8.0	33
49	Ultrathin Ironâ€Cobalt Oxide Nanosheets with Abundant Oxygen Vacancies for the Oxygen Evolution Reaction. Advanced Materials, 2017, 29, 1606793.	21.0	1,144
50	A facile method to synthesize boron-doped Ni/Fe alloy nano-chains as electrocatalyst for water oxidation. Journal of Power Sources, 2017, 349, 68-74.	7.8	45
51	A niobium and tantalum co-doped perovskite cathode for solid oxide fuel cells operating below 500 °C. Nature Communications, 2017, 8, 13990.	12.8	180
52	Recent development on perovskiteâ€ŧype cathode materials based on SrCoO _{3 â^'} <i>_{Î′}</i> parent oxide for intermediateâ€ŧemperature solid oxide f cells. Asia-Pacific Journal of Chemical Engineering, 2016, 11, 370-381.	uel.5	32
53	Lowâ€Temperature Synthesis of Hierarchical Amorphous Basic Nickel Carbonate Particles for Water Oxidation Catalysis. ChemSusChem, 2015, 8, 2193-2197.	6.8	11
54	Comparative Studies of SrCo _{1â^'<i>x</i>} Ta _{<i>x</i>} O _{3â^'<i>Î^</i>} (<i>x</i> =0.05–0.4) Oxides as Cathodes for Lowâ€Temperature Solidâ€Oxide Fuel Cells. ChemElectroChem, 2015, 2, 1331-1338.	3.4	50

#	Article	IF	CITATIONS
55	A comparative study of SrCo _{0.8} Nb _{0.2} O _{3â^{~1}Î} and SrCo _{0.8} Ta _{0.2} O _{3â^{~1}Î} as low-temperature solid oxide fuel cell cathodes: effect of non-geometry factors on the oxygen reduction reaction. Journal of Materials Chemistry A. 2015, 3, 24064-24070.	10.3	52
56	ln Situ Tetraethoxysilaneâ€Templated Porous Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O _{3â^'<i>δ</i>} Perovskite for the Oxygen Evolution Reaction. ChemElectroChem, 2015, 2, 200-203.	3.4	35
57	SrCo0.85Fe0.1P0.05O3â^´Î´ perovskite as a cathode for intermediate-temperature solid oxide fuel cells. Journal of Materials Chemistry A, 2013, 1, 13632.	10.3	46
58	Defunctionalization of fructose and sucrose: Iron-catalyzed production of 5-hydroxymethylfurfural from fructose and sucrose. Catalysis Today, 2011, 175, 524-527.	4.4	65
59	Mechanochemically Synthesised Flexible Electrodes based on Bimetallic Metalâ€organic Framework Glasses for the Oxygen Evolution Reaction. Angewandte Chemie, 0, , .	2.0	7