Nicola Cufaro Petroni

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/1368934/publications.pdf
Version: 2024-02-01

1 Fast simulation of tempered stable Ornsteinâ€"Uhlenbeck processes. Computational Statistics, 2022, 37, 2517-2551.

Gamma-related Ornsteinâ€"Uhlenbeck processes and their simulation*. Journal of Statistical Computation and Simulation, 2021, 91, 1108-1133.

Fast Pricing of Energy Derivatives with Mean-Reverting Jump-diffusion Processes. Applied Mathematical Finance, 2021, 28, 1-22.

Pricing exchange options with correlated jump diffusion processes. Quantitative Finance, 2020, 20, 1811-1823.

Logistic and \hat{I}_{s}-logistic models in population dynamics: general analysis and exact results. Journal of
Physics A: Mathematical and Theoretical, 2020, 53, 445005.

6 Coupling Poisson Processes by Self-Decomposability. Mediterranean Journal of Mathematics, 2017, 14, 1.

```
L3 LÃ@vy processes and SchrÃ厅dinger equation. Physica A: Statistical Mechanics and Its Applications, 2009,
    388, 824-836.
2.6
38
2.6
38
```

Selfdecomposability and selfsimilarity: A concise primer. Physica A: Statistical Mechanics and Its
2.6

16
Applications, 2008, 387, 1875-1894.
2.1

15
2227-2250.

LÃ@vyâ€"Student processes for a stochastic model of beam halos. Nuclear Instruments and Methods in
Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006,
1.6

7
561, 237-243.

17 LÃ@vy-Student distributions for halos in accelerator beams. Physical Review E, 2005, 72, 066502.

Remarks on Observed Superluminal Light Propagation. Foundations of Physics Letters, 2001, 14,

The EXPLODET project: advanced nuclear techniques for humanitarian demining. Nuclear Instruments 24 and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 422, 918-921.
$25 \quad$ Exact solutions of Fokker-Planck equations associated to quantum w2.12426 Quantum mechanical states as attractors for Nelson processes. Foundations of Physics, 1995, 25,297-315.

Detection of pitch in random acoustic signals by neural networks. Journal of New Music Research, 1994, 23, 369-399.

Single-particle trajectories and interferences in quantum mechanics. Foundations of Physics, 1992, 22,
1-40.

On the structure of the quantum-mechanical probability models. Foundations of Physics, 1992, 22,
1379-1401.
1.3

Conditioning in quantum mechanics. Physics Letters, Section A: General, Atomic and Solid State
Physics, 1991, 160, 107-115.

Stochastic mechanics and quantum interference. Physics Letters, Section A: General, Atomic and Solid State Physics, 1989, 141, 370-376.

Second-order wave equation for spin-1/2 fields: 8-Spinors and canonical formulation. Foundations of Physics, 1988, 18, 1057-1075.

Einstein-Podolsky-Rosen constraints on quantum action at a distance: The Sutherland paradox.
Foundations of Physics, 1987, 17, 759-773.

Classical analogs for quantum systems. Physics Letters, Section A: General, Atomic and Solid State
Physics, 1987, 124, 475-479.
2.1
1.3

8
Causal space-time paths of individual distinguishable particle motions inN-body quantum systems:
Elimination of negative probabilities. Lettere Al Nuovo Cimento Rivista Internazionale Della Societ
Italiana Di Fisica, 1985, 42, 285-294. (An alternative derivation of the spin-dependent quantum potential. Lettere Al Nuovo Cimento Rivista

Elimination of negative probabilities.
Italiana Di Fisica, 1985, 42, 285-294.

Internazionale Della SocietÃ Italiana Di Fisica, 1985, 42, 362-364.
Realistic physical origin of the quantum observable operator algebra in the frame of the causal
stochastic interpretation of quantum mechanics: The relativistic spin-zero case. Physical Review D,
$1985,32,1375-1383$.
$4.7 \quad 32$

1985, 32, 1375-1383.

42 Second-order wave equation for spin-(1/2) fields. Physical Review D, 1985, 31, 3157-3161.
$4.7 \quad 12$

43 Form of a spin-dependent quantum potential. Physical Review D, 1984, 30, 495-497.
$4.7 \quad 11$

Causal stochastic interpretation of Fermiâ€"Dirac statistics in terms of distinguishable non-locally
correlated particles. Physics Letters, Section A: General, Atomic and Solid State Physics, 1984, 101, 4-6.
2.1

31

Elimination of negative probabilities within the causal stochastic interpretation of quantum
45 mechanics. Physics Letters, Section A: General, Atomic and Solid State Physics, 1984, 106, 368-370.
2.1

23

A causal stochastic theory of spin-1/2 fields. Societa Italiana Di Fisica Nuovo Cimento B-General
$46 \quad$ Ahysics, Relativity Astronomy and Mathematical Physics and Methods, 1984, 81, 243-259.
0.2

17

> Random motions at the velocity of light and relativistic quantum mechanics. Journal of Physics A,
> 1984, 17, 599-608.
$1.6 \quad 8$

48 Dirac's aether in relativistic quantum mechanics. Foundations of Physics, 1983, 13, 253-286.
1.3

49
Causal action-at-a-distance interpretation of the aspect-Rapisarda experiments. Physics Letters, Section
49 A: General, Atomic and Solid State Physics, 1983, 93, 383-387.
$2.1 \quad 17$
A: General, Atomic and Solid State Physics, 1983, 93, 383-387.

Stochastic model for the motion of correlated photon pairs. Physics Letters, Section A: General,
Atomic and Solid State Physics, 1982, 88, 272-274.
$2.1 \quad 9$

Stochastic derivation of the Dirac equation in terms of a fluid of spinning tops endowed with
51 random fluctuations at the velocity of light. Physics Letters, Section A: General, Atomic and Solid
$2.1 \quad 17$
State Physics, 1981, 81, 12-14.
Action-at-a-distance and causality in the stochastic interpretation of quantum mechanics. Lettere Al

Markov process at the velocity of light: The Klein-Gordon statistic. International Journal of

Causal superluminal interpretation of the Einstein-Podolsky-Rosen paradox. Lettere Al Nuovo Cimento

