
Anthony F Masters

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1368918/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Isopropenyl esters (iPEs) in green organic synthesis. Chemistry - A European Journal, 2022, , .	1.7	2
2	Removal of Pb ²⁺ from Water Using Sustainable Brown Seaweed Phlorotannins. Langmuir, 2022, 38, 8324-8333.	1.6	3
3	Critical review: hydrothermal synthesis of 1T-MoS ₂ – an important route to a promising material. Journal of Materials Chemistry A, 2021, 9, 9451-9461.	5.2	37
4	Chevrel Phase Nanoparticles as Electrocatalysts for Hydrogen Evolution. ACS Applied Nano Materials, 2021, 4, 2030-2036.	2.4	10
5	The Catalytic Nature of Chevrel Phases (MxMo6S8) in Review. Materials Research Bulletin, 2021, 139, 111286.	2.7	15
6	3R-MoS ₂ in Review: History, Status, and Outlook. ACS Applied Energy Materials, 2021, 4, 7405-7418.	2.5	39
7	Interactions of Plasmonic Silver Nanoparticles with High Energy Sites on Multiâ€Faceted Rutile TiO ₂ Photoanodes. ChemCatChem, 2020, 12, 469-477.	1.8	4
8	Step by step extraction of bio-actives from the brown seaweeds, Carpophyllum flexuosum, Carpophyllum plumosum, Ecklonia radiata and Undaria pinnatifida. Algal Research, 2020, 52, 102092.	2.4	26
9	Nanoparticles for Undergraduates: Creation, Characterization, and Catalysis. Journal of Chemical Education, 2020, 97, 4166-4172.	1.1	11
10	Interfacial Reactions between Lithium and Grain Boundaries from Anatase TiO ₂ –TUD-1 Electrodes in Lithium-Ion Batteries with Enhanced Capacity Retention. ACS Omega, 2020, 5, 7584-7592.	1.6	3
11	Exploring Opportunities for Platinum Nanoparticles Encapsulated in Porous Liquids as Hydrogenation Catalysts. Chemistry - A European Journal, 2020, 26, 7059-7064.	1.7	25
12	Interactions of Plasmonic Silver Nanoparticles with High Energy Sites on Multiâ€Faceted Rutile TiO ₂ Photoanodes. ChemCatChem, 2020, 12, 400-400.	1.8	0
13	Hydrothermal Liquefaction of αâ€Oâ€4 Aryl Ether Linkages in Lignin. ChemSusChem, 2020, 13, 2002-2006.	3.6	11
14	4-Nitrophenol Reduction: Probing the Putative Mechanism of the Model Reaction. ACS Catalysis, 2020, 10, 5516-5521.	5.5	178
15	Understanding the link between solid/liquid interfaces and photoelectrochemical activity in novel thin-film photoanodes of preferentially oriented high-index rutile TiO2 facets – A work inspired by Michel Che's research on surface chemistry. Journal of Catalysis, 2020, 392, 186-196.	3.1	4
16	Immobilisation of Homogeneous Pd Catalysts within a Type I Porous Liquid. Australian Journal of Chemistry, 2020, 73, 1296.	0.5	5
17	Salt-enhanced photocatalytic hydrogen production from water with carbon nitride nanorod photocatalysts: cation and pH dependence. Journal of Materials Chemistry A, 2019, 7, 18987-18995.	5.2	21
18	The encapsulation of metal nanoparticles within porous liquids. Chemical Communications, 2019, 55, 11179-11182.	2.2	21

#	Article	IF	CITATIONS
19	Toward an Understanding of the Forces Behind Extractive Desulfurization of Fuels with Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2019, 7, 4087-4093.	3.2	33
20	Investigating homogeneous Co/Br ^{â^'} /H ₂ O ₂ catalysed oxidation of lignin model compounds in acetic acid. Catalysis Science and Technology, 2019, 9, 384-397.	2.1	7
21	The Influence of Pyridinium-Based Additives on Zinc Electrodeposition in Aqueous Solution. Journal of the Electrochemical Society, 2019, 166, D192-D198.	1.3	4
22	Single-Step Methylation of Chitosan Using Dimethyl Carbonate as a Green Methylating Agent. Molecules, 2019, 24, 3986.	1.7	11
23	Enhanced Photocatalytic Hydrogen Evolution with TiO ₂ –TiN Nanoparticle Composites. Journal of Physical Chemistry C, 2019, 123, 3740-3749.	1.5	37
24	A comparison of photocatalytic reforming reactions of methanol and triethanolamine with Pd supported on titania and graphitic carbon nitride. Applied Catalysis B: Environmental, 2019, 240, 373-379.	10.8	71
25	Optimised heterojunctions between [100]-oriented rutile TiO2 arrays and {001} faceted anatase nanodomains for enhanced photoelectrochemical activity. Sustainable Energy and Fuels, 2018, 2, 1463-1473.	2.5	12
26	Effective Removal of Toxic Heavy Metal Ions from Aqueous Solution by CaCO3 Microparticles. Water, Air, and Soil Pollution, 2018, 229, 1.	1.1	24
27	Dynamic Nuclear Polarization NMR Spectroscopy of Polymeric Carbon Nitride Photocatalysts: Insights into Structural Defects and Reactivity. Angewandte Chemie, 2018, 130, 6964-6968.	1.6	27
28	Dynamic Nuclear Polarization NMR Spectroscopy of Polymeric Carbon Nitride Photocatalysts: Insights into Structural Defects and Reactivity. Angewandte Chemie - International Edition, 2018, 57, 6848-6852.	7.2	53
29	Process systems for the carbonate interchange reactions of DMC and alcohols: efficient synthesis of catechol carbonate. Catalysis Science and Technology, 2018, 8, 1971-1980.	2.1	19
30	Bromozincate ionic liquids in the Knoevenagel condensation reaction. Applied Catalysis B: Environmental, 2018, 223, 228-233.	10.8	31
31	Organosilica Nanotube Templates: Oneâ€Pot Synthesis of Carbonâ€Modified Polymeric Carbon Nitride Nanorods for Photocatalysis. ChemCatChem, 2018, 10, 581-589.	1.8	22
32	A comparative assessment of the activity and structure of phlorotannins from the brown seaweed Carpophyllum flexuosum. Algal Research, 2018, 29, 130-141.	2.4	45
33	Selective Catalytic Methylation of Phloroglucinol with Dimethyl Carbonate in the Presence of Heterogeneous Acids. European Journal of Organic Chemistry, 2018, 2018, 6249-6255.	1.2	0
34	The Autocatalytic Isomerization of Allylbenzene by Nickel(0) Tetrakis(triethylphosphite). European Journal of Inorganic Chemistry, 2018, 2018, 3384-3387.	1.0	5
35	Shining Light on Carbon Nitrides: Leveraging Temperature To Understand Optical Gap Variations. Chemistry of Materials, 2018, 30, 4253-4262.	3.2	28
36	Structural Investigation of Cobalt Oxide Clusters Derived from Molecular Cobalt Cubane, Trimer, and Dimer Oligomers in a Phosphate Electrolyte. Journal of Physical Chemistry C, 2017, 121, 11021-11026.	1.5	4

#	Article	IF	CITATIONS
37	Polymeric carbon nitride for solar hydrogen production. Chemical Communications, 2017, 53, 7438-7446.	2.2	42
38	Unravelling Some of the Key Transformations in the Hydrothermal Liquefaction of Lignin. ChemSusChem, 2017, 10, 2140-2144.	3.6	26
39	Renewable Aromatics from Kraft Lignin with Molybdenumâ€Based Catalysts. ChemCatChem, 2017, 9, 2717-2726.	1.8	29
40	A New Approach to Understand the Adsorption of Thiophene on Different Surfaces: An Atom Probe Investigation of Self-Assembled Monolayers. Langmuir, 2017, 33, 9573-9581.	1.6	11
41	Extractive Denitrogenation of Fuel Oils with Ionic Liquids: A Systematic Study. Energy & Fuels, 2017, 31, 2183-2189.	2.5	31
42	Zinc Electrodeposition in the Presence of an Aqueous Electrolyte Containing 1-Ethylpyridinium Bromide: Unexpected Oddities. Australian Journal of Chemistry, 2017, 70, 1025.	0.5	2
43	The influence of novel bromine sequestration agents on zinc/bromine flow battery performance. RSC Advances, 2016, 6, 110548-110556.	1.7	47
44	From macroalgae to liquid fuel via waste-water remediation, hydrothermal upgrading, carbon dioxide hydrogenation and hydrotreating. Energy and Environmental Science, 2016, 9, 1828-1840.	15.6	59
45	Masked <i>N</i> â€Heterocyclic Carbene atalyzed Alkylation of Phenols with Organic Carbonates. ChemSusChem, 2016, 9, 2312-2316.	3.6	17
46	Electrochemical investigation of [Co4(μ3-O)4(μ-OAc)4(py)4] and peroxides by cyclic voltammetry. Chemical Communications, 2016, 52, 14412-14415.	2.2	7
47	Microwave-assisted methylation of dihydroxybenzene derivatives with dimethyl carbonate. RSC Advances, 2016, 6, 58443-58451.	1.7	18
48	Beyond the Halogen Bond: Examining the Limits of Extended Polybromide Networks through Quantum hemical Investigations. Chemistry - an Asian Journal, 2016, 11, 682-686.	1.7	9
49	Factors influencing the formation of polybromide monoanions in solutions of ionic liquid bromide salts. Physical Chemistry Chemical Physics, 2016, 18, 7251-7260.	1.3	41
50	Delaminated MoS 2 as a structural and functional modifier for MgH 2 – Better hydrogen desorption kinetics through induced worm-like morphologies. International Journal of Hydrogen Energy, 2016, 41, 3551-3560.	3.8	8
51	The influence of ionic liquid additives on zinc half-cell electrochemical performance in zinc/bromine flow batteries. RSC Advances, 2016, 6, 27788-27797.	1.7	45
52	A nano-engineered graphene/carbon nitride hybrid for photocatalytic hydrogen evolution. Journal of Energy Chemistry, 2016, 25, 225-227.	7.1	12
53	Strained surface siloxanes as a source of synthetically important radicals. RSC Advances, 2015, 5, 100618-100624.	1.7	5
54	Changing the Action of Iron from Stoichiometric to Electrocatalytic in the Hydrogenation of Ketones in Aqueous Acidic Media. ChemSusChem, 2015, 8, 3712-3717.	3.6	2

#	Article	IF	CITATIONS
55	Molecular Cobalt Clusters as Precursors of Distinct Active Species in Electrochemical, Photochemical, and Photoelectrochemical Water Oxidation Reactions in Phosphate Electrolytes. Chemistry - A European Journal, 2015, 21, 16578-16584.	1.7	16
56	Hydrogenated Defects in Graphitic Carbon Nitride Nanosheets for Improved Photocatalytic Hydrogen Evolution. Journal of Physical Chemistry C, 2015, 119, 14938-14946.	1.5	148
57	The Formation of Highâ€Order Polybromides in a Roomâ€Temperature Ionic Liquid: From Monoanions ([Br ₅] ^{â''} to [Br ₁₁] ^{â''}) to the Isolation of [PC ₁₆ H ₃₆] ₂ [Br ₂₄] as Determined by van der Waals Bonding Radii, Chemistry - A European Iournal, 2015, 21, 2961-2965.	1.7	49
58	Zinc bromide in aqueous solutions of ionic liquid bromide salts: the interplay between complexation and electrochemistry. RSC Advances, 2015, 5, 83674-83681.	1.7	17
59	Hydrogen from Formic Acid via Its Selective Disproportionation over Nanodomain-Modified Zeolites. ACS Catalysis, 2015, 5, 4353-4362.	5.5	16
60	Comment on Trondheim Paper. Algal Research, 2015, 9, 322.	2.4	2
61	Photocatalytic Hydrogen Evolution from Silicaâ€Templated Polymeric Graphitic Carbon Nitride–Is the Surface Area Important?. ChemCatChem, 2015, 7, 121-126.	1.8	57
62	Metal/bromide autoxidation of triglycerides for the preparation of FAMES to improve the cold-flow characteristics of biodiesel. Catalysis Today, 2014, 233, 162-168.	2.2	4
63	Fullerene matrices in the MALDI-TOF mass spectroscopic characterisation of organometallic compounds. Journal of Organometallic Chemistry, 2014, 751, 482-492.	0.8	14
64	Controlling viscosity in methyl oleate derivatives through functional group design. New Journal of Chemistry, 2014, 38, 5777-5785.	1.4	5
65	Probing structure-functionality relationships of catalytic bimetallic Pt–Ru nanoparticles associated with improved sulfur resistance. RSC Advances, 2014, 4, 28062.	1.7	6
66	Facile, high-yielding preparation of pyrrolidinium, piperidinium, morpholinium and 2,3-dihydro-1H-isoindolinium salts and ionic liquids from secondary amines. RSC Advances, 2014, 4, 23327-23337.	1.7	11
67	Revealing the Distribution of the Atoms within Individual Bimetallic Catalyst Nanoparticles. Angewandte Chemie - International Edition, 2014, 53, 11190-11193.	7.2	42
68	Hydrogen from Formic Acid through Its Selective Disproportionation over Sodium Germanate—A Nonâ€Transitionâ€Metal Catalysis System. Angewandte Chemie - International Edition, 2014, 53, 11275-11279.	7.2	11
69	Titelbild: Revealing the Distribution of the Atoms within Individual Bimetallic Catalyst Nanoparticles (Angew. Chem. 42/2014). Angewandte Chemie, 2014, 126, 11279-11279.	1.6	0
70	Solar Hydrogen from an Aqueous, Nobleâ€Metalâ€Free Hybrid System in a Continuousâ€Flow Sampling Reaction System. Chemistry - A European Journal, 2014, 20, 7345-7350.	1.7	16
71	CHRâ€Insertion (RH, CH ₃) into Cyclohexylâ€&ubstituted Silsesquioxanes: Reactivity and Decomposition Studies. Chemistry - A European Journal, 2014, 20, 15169-15177.	1.7	3
72	Ionic liquids are compatible with on-water catalysis. Chemical Communications, 2013, 49, 8347.	2.2	12

#	Article	IF	CITATIONS
73	Structural features of ionic liquids: consequences for material preparation and organic reactivity. Green Chemistry, 2013, 15, 2655.	4.6	88
74	Reactions of p-coumaryl alcohol model compounds with dimethyl carbonate. Towards the upgrading of lignin building blocks. Green Chemistry, 2013, 15, 3195.	4.6	44
75	A flexible, bolaamphiphilic template for mesoporous silicas. Physical Chemistry Chemical Physics, 2013, 15, 13343.	1.3	1
76	1,3-Disubstituted imidazolium hydroxides: Dry salts or wet carbenes?. Catalysis Today, 2013, 200, 9-16.	2.2	37
77	Robust bimetallic Pt–Ru catalysts for the rapid hydrogenation of toluene and tetralin at ambient temperature and pressure. Applied Catalysis A: General, 2013, 454, 46-52.	2.2	18
78	Steric, hydrogen-bonding and structural heterogeneity effects on the nucleophilic substitution of N-(p-fluorophenyldiphenylmethyl)-4-picolinium chloride in ionic liquids. Organic and Biomolecular Chemistry, 2013, 11, 2534.	1.5	26
79	The chemistry of cobalt acetate. X. The preparations of the mixed ligand cobalt oligomers, [Co3O(C6H5N2O)3(CH3CO2)3][PF6].CH3CN (I), [Co4(μ2-OH)2(η1:η1:μ2-CH3COO)2(CH3CO2)2 (η1:η1:μ2-C11H8NO)2(η1:η1:η1:η1:μ2-C11H8N3O)2][PF6]2.CH3OH.3H2O (II) and [Co3O(CH3CO2)5(C7H6] (III) and the crystal structures of (I) and (II). Comparisons with homoleptic cobalt acetate dimers and	NO2)(py)3	8][B F6]
80	Application of Bismuthâ€Impregnated Mesoporous Silica to the Photochemical Oxidation of Methylene Blue: An Example of Nanoparticle Autocatalysis. ChemCatChem, 2013, 5, 959-965.	1.8	5
81	Unprecedented blue-shift in bismuth oxide supported on mesoporous silica. New Journal of Chemistry, 2013, 37, 593-600.	1.4	13
82	Hollow micro/nanomaterials as nanoreactors for photocatalysis. APL Materials, 2013, 1, .	2.2	24
83	Silsesquioxanes as molecular analogues of single-site heterogeneous catalysts. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468, 1968-1984.	1.0	13
84	Pseudoâ€Encapsulation—Nanodomains for Enhanced Reactivity in Ionic Liquids. Angewandte Chemie - International Edition, 2012, 51, 11483-11486.	7.2	36
85	Controlling Hydrolysis Reaction Rates with Binary Ionic Liquid Mixtures by Tuning Hydrogen-Bonding Interactions. Journal of Physical Chemistry B, 2012, 116, 1858-1864.	1.2	34
86	The Role of the Reactor Wall in Hydrothermal Biomass Conversions. Chemistry - an Asian Journal, 2012, 7, 2638-2643.	1.7	7
87	Exploring the Myth of Nascent Hydrogen and its Implications for Biomass Conversions. Chemistry - an Asian Journal, 2012, 7, 2629-2637.	1.7	4
88	The interplay of catechol ligands with nanoparticulate iron oxides. Dalton Transactions, 2012, 41, 2545.	1.6	99
89	The Kinetic Features of the Palladium-Catalyzed Hydrogenolysis of Nitriles and Amines. ChemCatChem, 2012, 4, 1179-1184.	1.8	17
90	lonicâ€Liquidâ€Mediated Activeâ€Site Control of MoS ₂ for the Electrocatalytic Hydrogen Evolution Reaction. Chemistry - A European Journal, 2012, 18, 8230-8239.	1.7	66

#	Article	IF	CITATIONS
91	Novel bis(methylimidazolium)alkane bolaamphiphiles as templates for supermicroporous and mesoporous silicas. Microporous and Mesoporous Materials, 2012, 148, 62-72.	2.2	22
92	Tuning the Photocatalytic Activity of CdS Nanocrystals through Intermolecular Interactions in Ionicâ€Liquid Solvent Systems. Chemistry - A European Journal, 2012, 18, 2923-2930.	1.7	11
93	The one-pot synthesis, characterisation and catalytic behaviour of mesoporous silica-sulfated zirconia solids. Catalysis Today, 2011, 178, 187-196.	2.2	10
94	Designing nanoscopic, fluxional bimetallic Pt–Ru alloy hydrogenation catalysts for improved sulfur tolerance. Catalysis Today, 2011, 178, 164-171.	2.2	18
95	A Palladiumâ€Catalyzed Multicascade Reaction: Facile Lowâ€Temperature Hydrogenolysis of Activated Nitriles and Related Functional Groups. ChemCatChem, 2011, 3, 1496-1502.	1.8	20
96	An ITQâ€2/TUDâ€1 Microâ€∤Mesoporous Composite: Inâ€Situ Delamination as a Tool for the Preparation of Innovative Materials. ChemCatChem, 2011, 3, 1759-1762.	1.8	10
97	Promoting the Formation of Active Sites with Ionic Liquids: A Case Study of MoS ₂ as Hydrogenâ€Evolutionâ€Reaction Electrocatalyst. ChemCatChem, 2011, 3, 1739-1742.	1.8	36
98	Ionic liquid-templated preparation of mesoporous silica embedded with nanocrystalline sulfated zirconia. Nanoscale Research Letters, 2011, 6, 192.	3.1	16
99	Penta-arylcyclopentadienyl complexes. Coordination Chemistry Reviews, 2011, 255, 1733-1790.	9.5	46
100	Zeolites – From curiosity to cornerstone. Microporous and Mesoporous Materials, 2011, 142, 423-438.	2.2	113
101	Metallasilsesquioxanes: Molecular Analogues of Heterogeneous Catalysts. Advances in Silicon Science, 2011, , 135-166.	0.6	44
102	The use of acidic task-specific ionic liquids in the formation of high surface area mesoporous silica. New Journal of Chemistry, 2009, 33, 1997.	1.4	15
103	Tetraammonium diaquadiperoxidooctamolybdate(VI) tetrahydrate. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, i53-i54.	0.2	5
104	Accessing Decaphenylmetallocenes of Ytterbium, Calcium, and Barium by Desolvation of Solvent-Separated Ion Pairs: Overcoming Adverse Solubility Properties. Organometallics, 2008, 27, 4772-4778.	1.1	72
105	The Biorefinery—Challenges, Opportunities, and an Australian Perspective. Bulletin of Science, Technology and Society, 2008, 28, 149-158.	1.1	32
106	Ce-TUD-1:Â Synthesis, Characterization, and Testing of a Versatile Heterogeneous Oxidation Catalyst. Industrial & Engineering Chemistry Research, 2007, 46, 4221-4225.	1.8	16
107	Partial Oxidation of 4-tert-Butyltoluene Catalyzed by Homogeneous Cobalt and Cerium Acetate Catalysts in the Brâ^'/H2O2/Acetic Acid System: Insights into Selectivity and Mechanism. Chemistry - A European Journal, 2007, 13, 8037-8044.	1.7	13
108	Dinuclear alkynyllanthanoid(ii) dications with pentaphenylcyclopentadienyl or tri-tert-butyldiphosphacyclopentadienyl counter ions. Chemical Communications, 2006, , 1003.	2.2	36

#	Article	IF	CITATIONS
109	Bis(2,2′,2′′-nitrilotriethanol)cobalt(II) bis(acetate). Acta Crystallographica Section E: Structure Reports Online, 2006, 62, m2429-m2431.	0.2	5
110	Manganese complexes of the pentaphenylcyclopentadienyl ligand. Polyhedron, 2006, 25, 1498-1506.	1.0	7
111	Facile synthesis of ionic liquids possessing chiral carboxylates. Tetrahedron Letters, 2006, 47, 7367-7370.	0.7	73
112	Fused Supracyclopentadienyl Ligand Precursors. Synthesis, Structure, and Some Reactions of 1,3-Diphenylcyclopenta[l]phenanthrene-2-one, 1,2,3-Triphenylcyclopenta[l]phenanthrene-2-ol, 1-Chloro-1,2,3-triphenylcyclopenta[l]phenanthrene, 1-Bromo-1,2,3-triphenylcyclopenta[l]phenanthrene, and 1,2,3-Triphenyl-1H-cyclopenta[l]phenanthrene. Australian Journal of Chemistry, 2006, 59, 135.	0.5	8
113	Synthesis and non-linear optical properties of (I·5-pentaphenylcyclopentadienyl)dicarbonylruthenium(II) σ-alkenyl complexes. Inorganica Chimica Acta, 2005, 358, 1663-1672.	1.2	7
114	Osmium silsesquioxane as model compound and homogeneous catalyst for the dihydroxylation of alkenes. Journal of Molecular Catalysis A, 2004, 220, 37-42.	4.8	37
115	X-ray Absorption Spectroscopic Studies of Chromium(V/IV/III)â^' 2-Ethyl-2-hydroxybutanoato(2â^'/1â^') Complexes. Inorganic Chemistry, 2004, 43, 1046-1055. The chemistry of cobalt acetate. VIII. New members of the family of oxo-centred trimers,	1.9	35
116	[Co3(μ3-O)(μ-O2CCH3)5â^'(μ-OR) L5]2+ (R=H, alkyl, L=ligand, p=O–4). The preparation and characterisati the trimeric tetrakis(μ-acetato)-(μ-hydroxo)-μ3-oxo-pentakis(pyridine)-tri-cobalt(III) hexafluorophosphate, [Co3(μ3-O)(μ-O2CCH3)4(μ-OH)(C5H5N)5][PF6]2, and the preparation and crystal structure of the trimeric tris(μ-acetato)-(μ-hydroxo)-(μ-methoxo)-I¼3-oxo-pentakis(pyridine)-tri-cobalt(III) hexafluorophosphateÂ-metl	1.0	25
117	Polyhedron, 2003, 22, 947-965. Chemistry of Cobalt Acetate. 7. Electrochemical Oxidation of μ3-Oxo-Centered Cobalt(III) Acetate Trimers. Inorganic Chemistry, 2003, 42, 8366-8370.	1.9	18
118	X-ray Crystal Structure of (η5-Pentaphenylcyclopentadienyl){1- (η5/6-phenyl)-2,3,4,5-tetraphenylcyclopentadienyl}iron(II), [Fe(η5-C5Ph5){(η5/6-C6H5)C5Ph4}], a Linkage Isomer of Decaphenylferrocene. Inorganic Chemistry, 2002, 41, 4618-4620.	1.9	16
119	The synthesis and X-ray structural characterisation of the decaphenylmolybdenocenium cation as its tetrafluoroborate salt. Polyhedron, 2002, 21, 1707-1714.	1.0	4
120	Title is missing!. Catalysis Letters, 2001, 75, 159-162.	1.4	31
121	Oxidation of adamantane by palladium acetate systems. Inorganica Chimica Acta, 1999, 294, 99-102.	1.2	5
122	The Decamethylferrocenium/Decamethylferrocene Redox Couple:Â A Superior Redox Standard to the Ferrocenium/Ferrocene Redox Couple for Studying Solvent Effects on the Thermodynamics of Electron Transfer. Journal of Physical Chemistry B, 1999, 103, 6713-6722.	1.2	571
100	The chemistry of cobalt acetatea€ IV. The isolation and crystal structure of the symmetric cubane, tetrakis[(μ-acetato)(μ3-oxo) (pyridine)cobalt(III)] · chloroform solvate, [Co4(μ3-O)4(μ-CH3CO2)4(C5H5N)in4]	

#	Article	IF	CITATIONS
127	Developments in Silica-Supported Organometallic Catalysis. , 1997, , 461-494.		5
128	The Structures of the Decaphenylmetallocenium Cations of Chromium and Cobalt. Australian Journal of Chemistry, 1997, 50, 1035.	0.5	10
129	Scanning and energy dispersive EXAFS studies of ethyl transmetallation in an alkene oligomerisation catalyst. Chemical Communications, 1996, , 647.	2.2	14
130	The isolation and crystal structure of the powerful Lewis acid, planar tetrakispyridine cobalt(II), [Co(C5H5N)4]2+, as its mixed chloride hexafluorophosphate salt. Polyhedron, 1996, 15, 473-479.	1.0	11
131	The chemistry of cobalt acetate: The isolation and crystal structure of the symmetric trimer,hexakis(μ-acetato)-μ3-oxo-tris(pyridine)tricobalt(III) perchlorate water solvate, [Co3O(CH3CO2)6(C5H5N)3][CiO4]·H2O. Polyhedron, 1996, 15, 2141-2150.	1.0	36
132	Polyhedron report number 51 Structural systematics in nickel carbonyl cluster anions. Polyhedron, 1995, 14, 339-365.	1.0	29
133	Kinetic and rapid scan spectrophotometric studies of the oligomerization of ethene and propene using the catalytic system [Ni(sacsac)P(n-butyl)3CCl]/AlEt2CCl. Polyhedron, 1995, 14, 547-553.	1.0	4
134	Nickel carbonyl cluster complexes. Polyhedron, 1995, 14, 829-868.	1.0	32
135	The Oligomerization of Dilute Ethylene Streams. Studies in Surface Science and Catalysis, 1994, , 527-532.	1.5	Ο
136	Models of surface-confined metallocene derivatives. Journal of Molecular Catalysis, 1994, 86, 309-318.	1.2	55
137	Interconversions of nickel carbonyl cluster anions. Inorganica Chimica Acta, 1993, 213, 49-55.	1.2	7
138	Preparation and characterization of iron complexes of the penta-p-tolylcyclopentadienyl and o-tolyltetraphenylcyclopentadienyl ligands. Inorganic Chemistry, 1993, 32, 211-217.	1.9	16
139	Oligomerization and isomerization of olefins by catalysts derived from nickel complexes of dithio-β-diketonates. Journal of the Chemical Society Dalton Transactions, 1993, , 59-68.	1.1	31
140	Electrochemistry of chlorinated ferrocenes: stability of chlorinated ferrocenium ions. Journal of the Chemical Society Dalton Transactions, 1993, , 835.	1.1	27
141	Preparation and characterization of iron complexes of the penta-p-tolylcyclopentadienyl and o-tolyltetraphenylcyclopentadienyl ligands. [Erratum to document cited in CA118(13):124740r]. Inorganic Chemistry, 1993, 32, 3388-3388.	1.9	0
142	Crystal and molecular structures of pentaphenylcyclopentadiene and of an isomer, 4,8-diphenyltribenzo[b,f,i]tricyclo[6.2.1.01,5]undecane, the product of a novel metal-assisted photoreaction. Inorganic Chemistry, 1992, 31, 2366-2370.	1.9	19
143	Ligand donor atom and substituent effects in olefin oligomerization and isomerization catalysed by nickel-based catalyst systems. Polyhedron, 1992, 11, 1285-1293.	1.0	17
144	The synthesis and characterization of norbornylsilasesquioxanes. Applied Organometallic Chemistry, 1992, 6, 253-260.	1.7	44

#	Article	IF	CITATIONS
145	Synthesis and characterisation of pentaphenylcyclo-pentadienyliron arene sandwich complex cations [Fe(η5-C5Ph5)(arene)]+and the X-ray crystal structure of the [Fe(η5-C5Ph5)(η6-C6H5Me)]+cation. Journal of the Chemical Society Dalton Transactions, 1991, , 1499-1505.	1.1	7
146	Alkane activation by homogeneous palladium complexes. Applied Organometallic Chemistry, 1991, 5, 521-523.	1.7	6
147	The oligomerization of lower olefins by catalysts derived from Ni(sacsac)(PBu3)Cl. Polyhedron, 1990, 9, 2809-2814.	1.0	7
148	Carbon monoxide poisoning as a probe for the active site(s) of a nickel-based olefin oligomerization catalyst. Applied Organometallic Chemistry, 1990, 4, 507-512.	1.7	11
149	(η5-Pentaphenylcyclopentadienyl){1-(η6-phenyl)-2,3,4,5-tetraphenylcyclopentadienyl} iron(II), [Fe(η5-C5Ph5){{η6-C6H5)C5Ph4}], a linkage isomer of decaphenylferrocene. Journal of the Chemical Society Chemical Communications, 1990, , 408-410.	2.0	21
150	The oligomerisation of ethene with catalysts exhibiting enzyme-like activities. Journal of Organometallic Chemistry, 1989, 367, 371-374.	0.8	31
151	The selective oligomerization of butenes by nickel-based catalysts. Polyhedron, 1988, 7, 2009-2014.	1.0	14
152	Detailed gas chromatography/mass spectrometric structural determination of olefin oligomerization products. Industrial & amp; Engineering Chemistry Research, 1987, 26, 1822-1824.	1.8	6
153	Electron spin resonance studies of the one-electron-reduction products of nickel(II) 1,3-dithio .betadiketonate complexes. Inorganic Chemistry, 1985, 24, 401-408.	1.9	18
154	Applications of molybdenum-95 NMR. 8. Molybdenum(0) carbonyl derivatives of phosphines, phosphites and related ligands. Inorganic Chemistry, 1983, 22, 908-911.	1.9	43
155	Applications of molybdenum-95 nuclear magnetic resonance spectroscopy. 3. Arenemolybdenum tricarbonyl derivatives. Inorganic Chemistry, 1981, 20, 4183-4186.	1.9	36
156	Redox properties of thiolate compounds of oxomolybdenum(V) and their tungsten and selenium analogs. Journal of the American Chemical Society, 1981, 103, 1959-1964.	6.6	63
157	Molybdenum-95 NMR of molybdenumî— sulfur and î— selenium species, structural charaterisation of the [(CN)CuS2MoS2]2â^' anion. Inorganica Chimica Acta, 1981, 54, L131-L132.	1.2	37
158	Schiff base complexes of rhenium(IV) and rhenium(V). Journal of the Chemical Society Dalton Transactions, 1979, , 542.	1.1	50
159	Cluster alkyls of rhenium. Journal of the Chemical Society Chemical Communications, 1976, , 858.	2.0	7