List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/136865/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Macrophage inflammatory state influences susceptibility to lysosomal damage. Journal of Leukocyte Biology, 2022, 111, 629-639.	1.5	2
2	Akt Plays Differential Roles during the Life Cycles of Acute and Persistent Murine Norovirus Strains in Macrophages. Journal of Virology, 2022, 96, JVI0192321.	1.5	2
3	Identification of cell type specific ACE2 modifiers by CRISPR screening. PLoS Pathogens, 2022, 18, e1010377.	2.1	9
4	Human Norovirus Triggers Primary B Cell Immune Activation <i>In Vitro</i> . MBio, 2022, 13, e0017522.	1.8	9
5	Going Retro, Going Viral: Experiences and Lessons in Drug Discovery from COVID-19. Molecules, 2022, 27, 3815.	1.7	1
6	Antiviral effects of bovine lactoferrin on human norovirus. Biochemistry and Cell Biology, 2021, 99, 166-172.	0.9	30
7	Prolonged Severe Acute Respiratory Syndrome Coronavirus 2 Replication in an Immunocompromised Patient. Journal of Infectious Diseases, 2021, 223, 23-27.	1.9	256
8	Egress of non-enveloped enteric RNA viruses. Journal of General Virology, 2021, 102, .	1.3	19
9	SARS-CoV-2 drives JAK1/2-dependent local complement hyperactivation. Science Immunology, 2021, 6, .	5.6	144
10	Salmonella enterica Serovar Typhimurium SPI-1 and SPI-2 Shape the Global Transcriptional Landscape in a Human Intestinal Organoid Model System. MBio, 2021, 12, .	1.8	15
11	Comparative Analysis of Public RNA-Sequencing Data from Human Intestinal Enteroid (HIEs) Infected with Enteric RNA Viruses Identifies Universal and Virus-Specific Epithelial Responses. Viruses, 2021, 13, 1059.	1.5	5
12	TNFRSF13B polymorphisms counteract microbial adaptation to natural IgA. JCI Insight, 2021, 6, .	2.3	1
13	A Norovirus Uses Bile Salts To Escape Antibody Recognition While Enhancing Receptor Binding. Journal of Virology, 2021, 95, e0017621.	1.5	14
14	Host-Virus Chimeric Events in SARS-CoV-2-Infected Cells Are Infrequent and Artifactual. Journal of Virology, 2021, 95, e0029421.	1.5	28
15	Morphological cell profiling of SARS-CoV-2 infection identifies drug repurposing candidates for COVID-19. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	124
16	Multiple Signals in the Gut Contract the Mouse Norovirus Capsid To Block Antibody Binding While Enhancing Receptor Affinity. Journal of Virology, 2021, 95, e0147121.	1.5	7
17	Comparative transcriptional profiling of the early host response to infection by typhoidal and non-typhoidal Salmonella serovars in human intestinal organoids. PLoS Pathogens, 2021, 17, e1009987.	2.1	12
18	Reply to Grigoriev et al., "Sequences of SARS-CoV-2 "Hybrids―with the Human Genome: Signs 1 of Non-coding RNA?― Journal of Virology, 2021, , JVI0169021.	1.5	0

#	Article	IF	CITATIONS
19	Structural Studies on the Shapeshifting Murine Norovirus. Viruses, 2021, 13, 2162.	1.5	9
20	Inactivation of Murine Norovirus and Fecal Coliforms by Ferrate(VI) in Secondary Effluent Wastewater. Environmental Science & Technology, 2020, 54, 1878-1888.	4.6	49
21	The intestinal regionalization of acute norovirus infection is regulated by the microbiota via bile acid-mediated priming of type III interferon. Nature Microbiology, 2020, 5, 84-92.	5.9	87
22	SARS-CoV-2 receptor networks in diabetic and COVID-19–associated kidney disease. Kidney International, 2020, 98, 1502-1518.	2.6	64
23	Performic Acid Disinfection of Municipal Secondary Effluent Wastewater: Inactivation of Murine Norovirus, Fecal Coliforms, and Enterococci. Environmental Science & Technology, 2020, 54, 12761-12770.	4.6	24
24	Norovirus infection causes acute self-resolving diarrhea in wild-type neonatal mice. Nature Communications, 2020, 11, 2968.	5.8	14
25	CD300LF Polymorphisms of Inbred Mouse Strains Confer Resistance to Murine Norovirus Infection in a Cell Type-Dependent Manner. Journal of Virology, 2020, 94, .	1.5	3
26	Infectious Norovirus Is Chronically Shed by Immunocompromised Pediatric Hosts. Viruses, 2020, 12, 619.	1.5	23
27	UV Disinfection of Human Norovirus: Evaluating Infectivity Using a Genome-Wide PCR-Based Approach. Environmental Science & Technology, 2020, 54, 2851-2858.	4.6	44
28	Epidemiological and Microbiome Associations Between Klebsiella pneumoniae and Vancomycin-Resistant Enterococcus Colonization in Intensive Care Unit Patients. Open Forum Infectious Diseases, 2020, 7, ofaa012.	0.4	28
29	CD300lf is the primary physiologic receptor of murine norovirus but not human norovirus. PLoS Pathogens, 2020, 16, e1008242.	2.1	44
30	Gastrointestinal organoid technology advances studies of enteric virus biology. PLoS Pathogens, 2020, 16, e1008212.	2.1	17
31	Editorial overview: Viruses and the microbiome. Current Opinion in Virology, 2019, 37, iii-vi.	2.6	3
32	Perturbation of ubiquitin homeostasis promotes macrophage oxidative defenses. Scientific Reports, 2019, 9, 10245.	1.6	15
33	The inert meets the living: The expanding view of metabolic alterations during viral pathogenesis. PLoS Pathogens, 2019, 15, e1007830.	2.1	8
34	Astrovirus replication in human intestinal enteroids reveals multi-cellular tropism and an intricate host innate immune landscape. PLoS Pathogens, 2019, 15, e1008057.	2.1	69
35	Glycolysis Is an Intrinsic Factor for Optimal Replication of a Norovirus. MBio, 2019, 10, .	1.8	58
36	Intestinal non-canonical NFκB signaling shapes the local and systemic immune response. Nature Communications, 2019, 10, 660.	5.8	69

CHRISTIANE E WOBUS

#	Article	lF	CITATIONS
37	Natural Secretory Immunoglobulins Promote Enteric Viral Infections. Journal of Virology, 2018, 92, .	1.5	18
38	The Dual Tropism of Noroviruses. Journal of Virology, 2018, 92, .	1.5	15
39	Evolution on the Biophysical Fitness Landscape of an RNA Virus. Molecular Biology and Evolution, 2018, 35, 2390-2400.	3.5	45
40	The Role of the Polymeric Immunoglobulin Receptor and Secretory Immunoglobulins during Mucosal Infection and Immunity. Viruses, 2018, 10, 237.	1.5	131
41	All Aboard! Enteric Viruses Travel Together. Cell Host and Microbe, 2018, 24, 183-185.	5.1	8
42	Norovirus Escape from Broadly Neutralizing Antibodies Is Limited to Allostery-Like Mechanisms. MSphere, 2017, 2, .	1.3	30
43	Recent advances in understanding noroviruses. F1000Research, 2017, 6, 79.	0.8	40
44	Prevalence of human norovirus and Clostridium difficile coinfections in adult hospitalized patients. Clinical Epidemiology, 2016, Volume 8, 253-260.	1.5	14
45	Anti-infective Activity of 2-Cyano-3-Acrylamide Inhibitors with Improved Drug-Like Properties against Two Intracellular Pathogens. Antimicrobial Agents and Chemotherapy, 2016, 60, 4183-4196.	1.4	10
46	Norovirus Regulation by Host and Microbe. Trends in Molecular Medicine, 2016, 22, 1047-1059.	3.5	58
47	Post-exposure antiviral treatment of norovirus infections effectively protects against diarrhea and reduces virus shedding in the stool in a mortality mouse model. Antiviral Research, 2016, 132, 76-84.	1.9	14
48	Inhibition of human norovirus by a viral polymerase inhibitor in the B cell culture system and in the mouse model. Antiviral Research, 2016, 132, 46-49.	1.9	54
49	Select membrane proteins modulate MNV-1 infection of macrophages and dendritic cells in a cell type-specific manner. Virus Research, 2016, 222, 64-70.	1.1	13
50	Oral Norovirus Infection Is Blocked in Mice Lacking Peyer's Patches and Mature M Cells. Journal of Virology, 2016, 90, 1499-1506.	1.5	27
51	Murine norovirus (MNV-1) exposure in vitro to the purine nucleoside analog Ribavirin increases quasispecies diversity. Virus Research, 2016, 211, 165-173.	1.1	7
52	Artifactâ€Free Quantification and Sequencing of Rare Recombinant Viruses by Using Dropâ€Based Microfluidics. ChemBioChem, 2015, 16, 2167-2171.	1.3	28
53	Isolation and Analysis of Rare Norovirus Recombinants from Coinfected Mice Using Drop-Based Microfluidics. Journal of Virology, 2015, 89, 7722-7734.	1.5	32
54	A high-throughput drop microfluidic system for virus culture and analysis. Journal of Virological Methods, 2015, 213, 111-117.	1.0	28

CHRISTIANE E WOBUS

#	Article	IF	CITATIONS
55	Viruses in Rodent Colonies: Lessons Learned from Murine Noroviruses. Annual Review of Virology, 2015, 2, 525-548.	3.0	18
56	Molecular Chaperone Hsp90 Is a Therapeutic Target for Noroviruses. Journal of Virology, 2015, 89, 6352-6363.	1.5	51
57	A Working Model of How Noroviruses Infect the Intestine. PLoS Pathogens, 2015, 11, e1004626.	2.1	70
58	Repurposing of rutin for the inhibition of norovirus replication. Archives of Virology, 2015, 160, 2353-2358.	0.9	21
59	Human norovirus culture in B cells. Nature Protocols, 2015, 10, 1939-1947.	5.5	202
60	Rapid, targeted and culture-free viral infectivity assay in drop-based microfluidics. Lab on A Chip, 2015, 15, 3934-3940.	3.1	53
61	Newly isolated mAbs broaden the neutralizing epitope in murine norovirus. Journal of General Virology, 2014, 95, 1958-1968.	1.3	22
62	Flexibility in Surface-Exposed Loops in a Virus Capsid Mediates Escape from Antibody Neutralization. Journal of Virology, 2014, 88, 4543-4557.	1.5	32
63	Efficient Norovirus and Reovirus Replication in the Mouse Intestine Requires Microfold (M) Cells. Journal of Virology, 2014, 88, 6934-6943.	1.5	103
64	Enteric bacteria promote human and mouse norovirus infection of B cells. Science, 2014, 346, 755-759.	6.0	689
65	A novel reverse genetics system for human norovirus. Trends in Microbiology, 2014, 22, 604-606.	3.5	3
66	Murine Norovirus: Propagation, Quantification, and Genetic Manipulation. Current Protocols in Microbiology, 2014, 33, 15K.2.1-61.	6.5	75
67	Advances in Norovirus Biology. Cell Host and Microbe, 2014, 15, 668-680.	5.1	182
68	Chemical Derivatives of a Small Molecule Deubiquitinase Inhibitor Have Antiviral Activity against Several RNA Viruses. PLoS ONE, 2014, 9, e94491.	1.1	27
69	Small Molecule Deubiquitinase Inhibitors Promote Macrophage Anti-Infective Capacity. PLoS ONE, 2014, 9, e104096.	1.1	14
70	Murine norovirus infection does not cause major disruptions in the murine intestinal microbiota. Microbiome, 2013, 1, 7.	4.9	32
71	Murine Norovirus Transcytosis across an <i>In Vitro</i> Polarized Murine Intestinal Epithelial Monolayer Is Mediated by M-Like Cells. Journal of Virology, 2013, 87, 12685-12693.	1.5	47
72	A Mouse Model for Human Norovirus. MBio, 2013, 4, .	1.8	171

#	Article	IF	CITATIONS
73	Multiple effects of dendritic cell depletion on murine norovirus infection. Journal of General Virology, 2013, 94, 1761-1768.	1.3	23
74	Neutral Red Assay for Murine Norovirus Replication and Detection in a Mouse. Bio-protocol, 2013, 3, .	0.2	9
75	Neutral Red Assay for Murine Norovirus Replication and Detection in a Mouse. Bio-protocol, 2013, 3, .	0.2	3
76	Antiviral Activity of a Small Molecule Deubiquitinase Inhibitor Occurs via Induction of the Unfolded Protein Response. PLoS Pathogens, 2012, 8, e1002783.	2.1	67
77	Murine Noroviruses Bind Glycolipid and Glycoprotein Attachment Receptors in a Strain-Dependent Manner. Journal of Virology, 2012, 86, 5584-5593.	1.5	68
78	Plaque Assay for Murine Norovirus. Journal of Visualized Experiments, 2012, , e4297.	0.2	67
79	Viruses are everywhere—what do we do?. Current Opinion in Virology, 2012, 2, 60-62.	2.6	7
80	Disruption of the Human Gut Microbiota following Norovirus Infection. PLoS ONE, 2012, 7, e48224.	1.1	109
81	Viral Infection Augments Nod1/2 Signaling to Potentiate Lethality Associated with Secondary Bacterial Infections. Cell Host and Microbe, 2011, 9, 496-507.	5.1	107
82	Transient or persistent norovirus infection does not alter the pathology of Salmonella typhimurium induced intestinal inflammation and fibrosis in mice. Comparative Immunology, Microbiology and Infectious Diseases, 2011, 34, 247-257.	0.7	19
83	A Small Molecule Deubiquitinase Inhibitor Increases Localization of Inducible Nitric Oxide Synthase to the Macrophage Phagosome and Enhances Bacterial Killing. Infection and Immunity, 2011, 79, 4850-4857.	1.0	13
84	High-Resolution Cryo-Electron Microscopy Structures of Murine Norovirus 1 and Rabbit Hemorrhagic Disease Virus Reveal Marked Flexibility in the Receptor Binding Domains. Journal of Virology, 2010, 84, 5836-5841.	1.5	70
85	High-Resolution X-Ray Structure and Functional Analysis of the Murine Norovirus 1 Capsid Protein Protruding Domain. Journal of Virology, 2010, 84, 5695-5705.	1.5	78
86	Endocytosis of Murine Norovirus 1 into Murine Macrophages Is Dependent on Dynamin II and Cholesterol. Journal of Virology, 2010, 84, 6163-6176.	1.5	93
87	Glycosphingolipids as Receptors for Non-Enveloped Viruses. Viruses, 2010, 2, 1011-1049.	1.5	83
88	Ganglioside-Linked Terminal Sialic Acid Moieties on Murine Macrophages Function as Attachment Receptors for Murine Noroviruses. Journal of Virology, 2009, 83, 4092-4101.	1.5	179
89	Mouse Norovirus Replication Is Associated with Virus-Induced Vesicle Clusters Originating from Membranes Derived from the Secretory Pathway. Journal of Virology, 2009, 83, 9709-9719.	1.5	101
90	Murine norovirus-1 entry into permissive macrophages and dendritic cells is pH-independent. Virus Research, 2009, 143, 125-129.	1.1	38

#	Article	IF	CITATIONS
91	Antibody Is Critical for the Clearance of Murine Norovirus Infection. Journal of Virology, 2008, 82, 6610-6617.	1.5	91
92	Structure of Antibody-Neutralized Murine Norovirus and Unexpected Differences from Viruslike Particles. Journal of Virology, 2008, 82, 2079-2088.	1.5	90
93	Detection of Murine Norovirus 1 by Using Plaque Assay, Transfection Assay, and Real-Time Reverse Transcription-PCR before and after Heat Exposure. Applied and Environmental Microbiology, 2008, 74, 543-546.	1.4	254
94	Recovery of infectious murine norovirus using pol II-driven expression of full-length cDNA. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11050-11055.	3.3	96
95	Murine Norovirus 1 Infection Is Associated with Histopathological Changes in Immunocompetent Hosts, but Clinical Disease Is Prevented by STAT1-Dependent Interferon Responses. Journal of Virology, 2007, 81, 3251-3263.	1.5	204
96	Murine Noroviruses Comprising a Single Genogroup Exhibit Biological Diversity despite Limited Sequence Divergence. Journal of Virology, 2007, 81, 10460-10473.	1.5	235
97	VPg of murine norovirus binds translation initiation factors in infected cells. Virology Journal, 2006, 3, 33.	1.4	71
98	Cleavage Map and Proteolytic Processing of the Murine Norovirus Nonstructural Polyprotein in Infected Cells. Journal of Virology, 2006, 80, 7816-7831.	1.5	186
99	Pathology of Immunodeficient Mice With Naturally Occurring Murine Norovirus Infection. Toxicologic Pathology, 2006, 34, 708-715.	0.9	96
100	Murine Norovirus: a Model System To Study Norovirus Biology and Pathogenesis. Journal of Virology, 2006, 80, 5104-5112.	1.5	515
101	Development of a Microsphere-Based Serologic Multiplexed Fluorescent Immunoassay and a Reverse Transcriptase PCR Assay To Detect Murine Norovirus 1 Infection in Mice. Vaccine Journal, 2005, 12, 1145-1151.	3.2	146
102	Replication of Norovirus in Cell Culture Reveals a Tropism for Dendritic Cells and Macrophages. PLoS Biology, 2004, 2, e432.	2.6	740
103	STAT1-Dependent Innate Immunity to a Norwalk-Like Virus. Science, 2003, 299, 1575-1578.	6.0	757
104	The VP1 capsid protein of adeno-associated virus type 2 is carrying a phospholipase A2 domain required for virus infectivity. Journal of General Virology, 2002, 83, 973-978.	1.3	270
105	Monoclonal Antibodies against the Adeno-Associated Virus Type 2 (AAV-2) Capsid: Epitope Mapping and Identification of Capsid Domains Involved in AAV-2–Cell Interaction and Neutralization of AAV-2 Infection. Journal of Virology, 2000, 74, 9281-9293.	1.5	250
106	Genetic capsid modifications allow efficient re-targeting of adeno-associated virus type 2. Nature Medicine, 1999, 5, 1052-1056.	15.2	337