## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1368491/publications.pdf Version: 2024-02-01



ΥΠΑΝΙ ΆλΙΤ

| #  | Article                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Materialia, 2016,<br>102, 187-196.                                    | 3.8  | 1,665     |
| 2  | Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Materialia, 2014, 62, 105-113.      | 3.8  | 1,036     |
| 3  | Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature, 2018, 563, 546-550.                                           | 13.7 | 988       |
| 4  | Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy. Scripta Materialia,<br>2013, 68, 526-529.                                  | 2.6  | 650       |
| 5  | Bulk Metallic Glass Composites with Transformationâ€Mediated Workâ€Hardening and Ductility.<br>Advanced Materials, 2010, 22, 2770-2773.                     | 11.1 | 431       |
| 6  | Phaseâ€Transformation Ductilization of Brittle Highâ€Entropy Alloys via Metastability Engineering.<br>Advanced Materials, 2017, 29, 1701678.                | 11.1 | 421       |
| 7  | Fe-based bulk metallic glasses: Glass formation, fabrication, properties and applications. Progress in Materials Science, 2019, 103, 235-318.               | 16.0 | 321       |
| 8  | Stacking fault energy of face-centered-cubic high entropy alloys. Intermetallics, 2018, 93, 269-273.                                                        | 1.8  | 312       |
| 9  | Formation of Cu–Zr–Al bulk metallic glass composites with improved tensile properties. Acta<br>Materialia, 2011, 59, 2928-2936.                             | 3.8  | 290       |
| 10 | Precipitation behavior and its effects on tensile properties of FeCoNiCr high-entropy alloys.<br>Intermetallics, 2016, 79, 41-52.                           | 1.8  | 225       |
| 11 | Polymorphism in a high-entropy alloy. Nature Communications, 2017, 8, 15687.                                                                                | 5.8  | 192       |
| 12 | Cooperative deformation in high-entropy alloys at ultralow temperatures. Science Advances, 2020, 6,<br>eaax4002.                                            | 4.7  | 157       |
| 13 | Formation, structure and properties of biocompatible TiZrHfNbTa high-entropy alloys. Materials<br>Research Letters, 2019, 7, 225-231.                       | 4.1  | 131       |
| 14 | Microstructure and mechanical properties of equimolar FeCoCrNi high entropy alloy prepared via powder extrusion. Intermetallics, 2016, 75, 25-30.           | 1.8  | 129       |
| 15 | <i>In-situ</i> neutron diffraction study of deformation behavior of a multi-component high-entropy alloy. Applied Physics Letters, 2014, 104, .             | 1.5  | 128       |
| 16 | Facile route to bulk ultrafine-grain steels for high strength and ductility. Nature, 2021, 590, 262-267.                                                    | 13.7 | 98        |
| 17 | Effects of alloying elements on glass formation, mechanical and soft-magnetic properties of Fe-based metallic glasses. Intermetallics, 2011, 19, 1502-1508. | 1.8  | 96        |
| 18 | Transformation-induced plasticity in bulk metallic glass composites evidenced by in-situ neutron diffraction. Acta Materialia, 2017, 124, 478-488.          | 3.8  | 93        |

| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Transformation-reinforced high-entropy alloys with superior mechanical properties via tailoring stacking fault energy. Journal of Alloys and Compounds, 2019, 792, 444-455.                                        | 2.8  | 90        |
| 20 | Strengthening of a CrMnFeCoNi high-entropy alloy by carbide precipitation. Journal of Alloys and Compounds, 2019, 792, 1028-1035.                                                                                  | 2.8  | 87        |
| 21 | Ductilizing Bulk Metallic Glass Composite by Tailoring Stacking Fault Energy. Physical Review Letters, 2012, 109, 245506.                                                                                          | 2.9  | 85        |
| 22 | Flexible Honeycombed Nanoporous/Glassy Hybrid for Efficient Electrocatalytic Hydrogen Generation.<br>Advanced Materials, 2019, 31, e1904989.                                                                       | 11.1 | 80        |
| 23 | High-temperature plastic flow of a precipitation-hardened FeCoNiCr high entropy alloy. Materials<br>Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017,<br>686, 34-40. | 2.6  | 69        |
| 24 | Improving plasticity of the Zr 46 Cu 46 Al 8 bulk metallic glass via thermal rejuvenation. Science<br>Bulletin, 2018, 63, 840-844.                                                                                 | 4.3  | 69        |
| 25 | Microstructural Control via Copious Nucleation Manipulated by In Situ Formed Nucleants: Large‧ized<br>and Ductile Metallic Glass Composites. Advanced Materials, 2016, 28, 8156-8161.                              | 11.1 | 63        |
| 26 | Extremely high dislocation density and deformation pathway of CrMnFeCoNi high entropy alloy at<br>ultralow temperature. Scripta Materialia, 2020, 188, 21-25.                                                      | 2.6  | 62        |
| 27 | Large magnetocaloric effect in Gd36Y20Al24Co20 bulk metallic glass. Journal of Alloys and Compounds, 2008, 457, 541-544.                                                                                           | 2.8  | 60        |
| 28 | The Phase Competition and Stability of High-Entropy Alloys. Jom, 2014, 66, 1973-1983.                                                                                                                              | 0.9  | 60        |
| 29 | Strong work-hardening behavior in a Ti-based bulk metallic glass composite. Scripta Materialia, 2013,<br>69, 73-76.                                                                                                | 2.6  | 59        |
| 30 | Nanoporous silver with tunable pore characteristics and superior surface enhanced Raman scattering. Corrosion Science, 2014, 84, 159-164.                                                                          | 3.0  | 58        |
| 31 | Evaluation of pitting corrosion in duplex stainless steel Fe20Cr9Ni for nuclear power application.<br>Acta Materialia, 2020, 197, 172-183.                                                                         | 3.8  | 58        |
| 32 | Snoek-type damping performance in strong and ductile high-entropy alloys. Science Advances, 2020, 6, eaba7802.                                                                                                     | 4.7  | 56        |
| 33 | Formation mechanism and characterization of nanoporous silver with tunable porosity and promising capacitive performance by chemical dealloying of glassy precursor. Acta Materialia, 2016, 105, 367-377.          | 3.8  | 52        |
| 34 | Impacts of atomic scale lattice distortion on dislocation activity in high-entropy alloys. Extreme<br>Mechanics Letters, 2017, 17, 38-42.                                                                          | 2.0  | 52        |
| 35 | Glass-forming ability enhanced by proper additions of oxygen in a Fe-based bulk metallic glass. Applied Physics Letters, 2009, 95,                                                                                 | 1.5  | 51        |
| 36 | Substantially enhanced plasticity of bulk metallic glasses by densifying local atomic packing. Nature Communications, 2021, 12, 6582.                                                                              | 5.8  | 51        |

| #  | Article                                                                                                                                                                                              | IF          | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|
| 37 | Effects of nanocrystal formation on the soft magnetic properties of Fe-based bulk metallic glasses.<br>Applied Physics Letters, 2011, 99, .                                                          | 1.5         | 50        |
| 38 | Designing Bulk Metallic Glass Composites with Enhanced Formability and Plasticity. Journal of<br>Materials Science and Technology, 2014, 30, 566-575.                                                | 5.6         | 49        |
| 39 | Deformation-induced spatiotemporal fluctuation, evolution and localization of strain fields in a bulk metallic glass. International Journal of Plasticity, 2015, 71, 136-145.                        | 4.1         | 49        |
| 40 | Aluminum-rich bulk metallic glasses. Scripta Materialia, 2008, 59, 1159-1162.                                                                                                                        | 2.6         | 48        |
| 41 | Tailoring grain growth and solid solution strengthening of single-phase CrCoNi medium-entropy alloys by solute selection. Journal of Materials Science and Technology, 2020, 54, 196-205.            | 5.6         | 48        |
| 42 | Stacking Fault Driven Phase Transformation in CrCoNi Medium Entropy Alloy. Nano Letters, 2021, 21, 1419-1426.                                                                                        | 4.5         | 47        |
| 43 | Oxygen effects on plastic deformation of a Zr-based bulk metallic glass. Applied Physics Letters, 2008, 92, .                                                                                        | 1.5         | 44        |
| 44 | Microstructure and mechanical properties of FeCoNiCr high-entropy alloy strengthened by nano-Y2O3<br>dispersion. Science China Technological Sciences, 2018, 61, 179-183.                            | 2.0         | 44        |
| 45 | Interpretable machine-learning strategy for soft-magnetic property and thermal stability in Fe-based metallic glasses. Npj Computational Materials, 2020, 6, .                                       | 3.5         | 42        |
| 46 | Ultrahigh cyclability of a large elastocaloric effect in multiferroic phase-transforming materials.<br>Materials Research Letters, 2019, 7, 137-144.                                                 | 4.1         | 41        |
| 47 | Effects of Sn addition on phase formation and mechanical properties of TiCu-based bulk metallic glass composites. Intermetallics, 2013, 42, 68-76.                                                   | 1.8         | 40        |
| 48 | Deformation-enhanced hierarchical multiscale structure heterogeneity in a Pd-Si bulk metallic glass.<br>Acta Materialia, 2020, 200, 42-55.                                                           | 3.8         | 40        |
| 49 | Glass formation and magnetic properties of Fe–C–Si–B–P–(Cr–Al–Co) bulk metallic glasses fabric<br>using industrial raw materials. Journal of Magnetism and Magnetic Materials, 2009, 321, 2833-2837. | ated<br>1.0 | 38        |
| 50 | Effects of metalloid elements on the glass-forming ability of Fe-based alloys. Journal of Alloys and<br>Compounds, 2009, 467, 187-190.                                                               | 2.8         | 38        |
| 51 | Effects of drawing on the tensile fracture strength and its reliability of small-sized metallic glasses.<br>Acta Materialia, 2010, 58, 2564-2576.                                                    | 3.8         | 37        |
| 52 | Nonlinear tensile deformation behavior of small-sized metallic glasses. Scripta Materialia, 2009, 61,<br>564-567.                                                                                    | 2.6         | 36        |
| 53 | Interpreting size effects of bulk metallic glasses based on a size-independent critical energy density.<br>Intermetallics, 2010, 18, 157-160.                                                        | 1.8         | 36        |
| 54 | Effects of cooling rates on the mechanical properties of a Ti-based bulk metallic glass. Science China: Physics, Mechanics and Astronomy, 2010, 53, 394-398.                                         | 2.0         | 35        |

| #  | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Hot corrosion behaviour and its mechanism of a new alumina-forming austenitic stainless steel in molten sodium sulphate. Corrosion Science, 2013, 77, 202-209.                                                   | 3.0  | 35        |
| 56 | Development of electrochemical supercapacitors with uniform nanoporous silver network.<br>Electrochimica Acta, 2015, 182, 224-229.                                                                               | 2.6  | 35        |
| 57 | Effects of Mo additions on the glass-forming ability and magnetic properties of bulk amorphous<br>Fe-C-Si-B-P-Mo alloys. Science China: Physics, Mechanics and Astronomy, 2010, 53, 430-434.                     | 2.0  | 34        |
| 58 | Strain hardening mediated by coherent nanoprecipitates in ultrahigh-strength steels. Acta Materialia,<br>2021, 213, 116984.                                                                                      | 3.8  | 34        |
| 59 | Compressive ductility and fracture resistance in CuZr-based shape-memory metallic-glass composites.<br>International Journal of Plasticity, 2020, 128, 102687.                                                   | 4.1  | 33        |
| 60 | Enhancing glass-forming ability via frustration of nano-clustering in alloys with a high solvent content. Scientific Reports, 2013, 3, 1983.                                                                     | 1.6  | 31        |
| 61 | Superior radiation tolerance via reversible disordering–ordering transition of coherent superlattices. Nature Materials, 2023, 22, 442-449.                                                                      | 13.3 | 31        |
| 62 | Size effects on the compressive deformation behaviour of a brittle Fe-based bulk metallic glass.<br>Philosophical Magazine Letters, 2010, 90, 403-412.                                                           | 0.5  | 30        |
| 63 | Bendable nanoporous copper thin films with tunable thickness and pore features. Corrosion Science, 2016, 104, 227-235.                                                                                           | 3.0  | 29        |
| 64 | Chemical short-range ordering and its strengthening effect in refractory high-entropy alloys.<br>Physical Review B, 2021, 103, .                                                                                 | 1.1  | 27        |
| 65 | Micro-alloying Effects of Yttrium on Recrystallization Behavior of an Alumina-forming Austenitic<br>Stainless Steel. Journal of Iron and Steel Research International, 2016, 23, 553-558.                        | 1.4  | 26        |
| 66 | Enhancement of glass-forming ability and plasticity via alloying the elements having positive heat of<br>mixing with Cu in Cu48Zr48Al4 bulk metallic glass. Journal of Alloys and Compounds, 2019, 777, 382-391. | 2.8  | 26        |
| 67 | Beneficial effects of oxygen addition on glass formation in a high-entropy bulk metallic glass.<br>Intermetallics, 2018, 99, 44-50.                                                                              | 1.8  | 25        |
| 68 | Ordered nitrogen complexes overcoming strength–ductility trade-off in an additively manufactured<br>high-entropy alloy. Virtual and Physical Prototyping, 2020, 15, 532-542.                                     | 5.3  | 25        |
| 69 | Designing novel bulk metallic glass composites with a high aluminum content. Scientific Reports, 2013,<br>3, 3353.                                                                                               | 1.6  | 24        |
| 70 | Inherent structure length in metallic glasses: simplicity behind complexity. Scientific Reports, 2015, 5, 12137.                                                                                                 | 1.6  | 23        |
| 71 | Improving high-temperature mechanical properties of cast CrFeCoNi high-entropy alloy by highly<br>thermostable in-situ precipitated carbides. Journal of Materials Science and Technology, 2021, 72, 29-38.      | 5.6  | 23        |
| 72 | Relationship between composite structures and compressive properties in CuZr-based bulk metallic glass system. Science Bulletin, 2011, 56, 3960-3964.                                                            | 1.7  | 21        |

| #  | Article                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Plasticity improvement in a bulk metallic glass composed of an open-cell Cu foam as the skeleton.<br>Composites Science and Technology, 2013, 75, 49-54.                                                                                                 | 3.8 | 21        |
| 74 | Fe-based bulk metallic glass composites without any metalloid elements. Acta Materialia, 2013, 61,<br>3214-3223.                                                                                                                                         | 3.8 | 21        |
| 75 | Formation mechanism and characterization of immiscible nanoporous binary Cu–Ag alloys with<br>excellent surface-enhanced Raman scattering performance by chemical dealloying of glassy<br>precursors. Inorganic Chemistry Frontiers, 2020, 7, 1127-1139. | 3.0 | 20        |
| 76 | Deformation-Induced Martensitic Transformation in Cu-Zr-Zn Bulk Metallic Glass Composites. Metals, 2015, 5, 2134-2147.                                                                                                                                   | 1.0 | 19        |
| 77 | Effects of non-hydrostaticity and grain size on the pressure-induced phase transition of the<br>CoCrFeMnNi high-entropy alloy. Journal of Applied Physics, 2018, 124, .                                                                                  | 1.1 | 19        |
| 78 | Alkali-deficiency driven charged out-of-phase boundaries for giant electromechanical response.<br>Nature Communications, 2021, 12, 2841.                                                                                                                 | 5.8 | 19        |
| 79 | Nano-network mediated high strength and large plasticity in an Al-based alloy. Materials Letters, 2012, 84, 59-62.                                                                                                                                       | 1.3 | 18        |
| 80 | Prediction of Structural Type for City-Scale Seismic Damage Simulation Based on Machine Learning.<br>Applied Sciences (Switzerland), 2020, 10, 1795.                                                                                                     | 1.3 | 18        |
| 81 | Role of rare-earth elements in glass formation of Al–Ca–Ni amorphous alloys. Journal of Alloys and<br>Compounds, 2012, 513, 387-392.                                                                                                                     | 2.8 | 16        |
| 82 | Alloying effects on mechanical properties of the Cu–Zr–Al bulk metallic glass composites.<br>Computational Materials Science, 2013, 79, 187-192.                                                                                                         | 1.4 | 16        |
| 83 | Effect of mechanical tension on corrosive and thermal properties of Cu50Zr40Ti10 metallic glass.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2013, 588, 49-58.                             | 2.6 | 15        |
| 84 | Local chemical fluctuation mediated ultra-sluggish martensitic transformation in high-entropy intermetallics. Materials Horizons, 2022, 9, 804-814.                                                                                                      | 6.4 | 15        |
| 85 | Composition effects on glass-forming ability and its indicator Î <sup>3</sup> . Intermetallics, 2008, 16, 410-417.                                                                                                                                       | 1.8 | 14        |
| 86 | Nanocrystallization in a Cu-doped Fe-based metallic glass. Journal of Alloys and Compounds, 2016, 688, 822-827.                                                                                                                                          | 2.8 | 14        |
| 87 | Effects of Nitrogen on the Glass Formation and Mechanical Properties of a Ti-Based Metallic Glass.<br>Acta Metallurgica Sinica (English Letters), 2016, 29, 173-180.                                                                                     | 1.5 | 14        |
| 88 | Simultaneously enhancing the strength and plasticity of Ti-based bulk metallic glass composites via microalloying with Ta. Materials Research Letters, 2020, 8, 23-30.                                                                                   | 4.1 | 14        |
| 89 | A quantitative link between microplastic instability and macroscopic deformation behaviors in metallic glasses. Journal of Applied Physics, 2009, 106, 083512.                                                                                           | 1.1 | 12        |
| 90 | Magnetocaloric effect in Er-Al-Co bulk metallic glasses. Science Bulletin, 2011, 56, 3978-3983.                                                                                                                                                          | 1.7 | 11        |

| #   | Article                                                                                                                                                                                                                                                                                                                                                                    | IF                                                      | CITATIONS     |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------|
| 91  | Work-hardenable Zr-based bulk metallic glass composites reinforced with ex-situ TiNi fibers. Journal of Alloys and Compounds, 2019, 806, 1497-1508.                                                                                                                                                                                                                        | 2.8                                                     | 9             |
| 92  | Interface-driven unusual anomalous Hall effect in <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"&gt;<mml:mrow><mml:mi<br>mathvariant="normal"&gt;M<mml:msub><mml:mi<br>mathvariant="normal"&gt;<mml:mi>x</mml:mi></mml:mi<br></mml:msub><mml:mi>Ga</mml:mi><mml:mo>/bilayers_Physical Review B_2019_100</mml:mo></mml:mi<br></mml:mrow></mml:math<br>         | 1.1<br>:mo> <mm< td=""><td>9<br/>Il:mi&gt;Pt</td></mm<> | 9<br>Il:mi>Pt |
| 93  | An electronic criterion for assessing intrinsic brittleness of metallic glasses. Journal of Chemical Physics, 2014, 141, 024503.                                                                                                                                                                                                                                           | 1.2                                                     | 8             |
| 94  | Ultrasonic Assisted Sintering Using Heat Converted from Mechanical Energy. Metals, 2020, 10, 971.                                                                                                                                                                                                                                                                          | 1.0                                                     | 8             |
| 95  | Enhanced Corrosion Resistance of an Alumina-forming Austenitic Steel Against Molten Al. Oxidation of Metals, 2020, 94, 465-475.                                                                                                                                                                                                                                            | 1.0                                                     | 7             |
| 96  | Direct synchrotron x-ray measurements of local strain fields in elastically and plastically bent metallic glasses. Intermetallics, 2015, 67, 132-137.                                                                                                                                                                                                                      | 1.8                                                     | 6             |
| 97  | Influences of Au ion radiation on microstructure and surface-enhanced Raman scattering of nanoporous copper. Nanotechnology, 2018, 29, 184001.                                                                                                                                                                                                                             | 1.3                                                     | 6             |
| 98  | Alloying effects of iridium on glass formation and glass-forming ability of the Zr–Cu–Al system.<br>Journal of Materials Research, 2009, 24, 1619-1623.                                                                                                                                                                                                                    | 1.2                                                     | 5             |
| 99  | Experimental and theoretical studies on site preference of Ti in Nd2(Fe,Ti)14B. Journal of Magnetism and Magnetic Materials, 2015, 379, 108-111.                                                                                                                                                                                                                           | 1.0                                                     | 5             |
| 100 | Corrosion and irradiation behavior of Fe-based amorphous coating in lead-bismuth eutectic liquids.<br>Science China Technological Sciences, 2022, 65, 440-449.                                                                                                                                                                                                             | 2.0                                                     | 5             |
| 101 | Alloying effects of the elements with a positive heat of mixing on the glass forming ability of Al-La-Ni<br>amorphous alloys. Science China: Physics, Mechanics and Astronomy, 2014, 57, 122-127.                                                                                                                                                                          | 2.0                                                     | 4             |
| 102 | Self-Assembled Hexagonal Lu <sub>1–<i>x</i></sub> In <i><sub>x</sub></i> FeO <sub>3</sub> Nanopillars<br>Embedded in Orthorhombic Lu <sub>1–<i>x</i></sub> In <i><sub>x</sub></i> FeO <sub>3</sub><br>Nanoparticle Matrixes as Room-Temperature Multiferroic Thin Films for Memory Devices and<br>Spintronic Applications. ACS Applied Nano Materials, 2020, 3, 7516-7523. | 2.4                                                     | 4             |
| 103 | Unravel unusual hardening behavior of a Pd–Ni–P metallic glass in its supercooled liquid region.<br>Applied Physics Letters, 2021, 118, .                                                                                                                                                                                                                                  | 1.5                                                     | 4             |
| 104 | Enhanced crystallization resistance and thermal stability via suppressing the metastable superlattice phase in Ni-(Pd)-P metallic glasses. Journal of Materials Science and Technology, 2020, 42, 203-211.                                                                                                                                                                 | 5.6                                                     | 3             |
| 105 | Unraveling magneto-structural coupling of Ni2MnGa alloy under the application of stress and magnetic field using <i>in situ</i> polarized neutron diffraction. Applied Physics Letters, 2020, 117, .                                                                                                                                                                       | 1.5                                                     | 3             |
| 106 | Effects of density difference of constituent elements on glass formation in TiCu-based bulk metallic glasses. Progress in Natural Science: Materials International, 2013, 23, 469-474.                                                                                                                                                                                     | 1.8                                                     | 1             |
| 107 | Revealing the role of local shear strain partition of transformable particles in a TRIP-reinforced bulk<br>metallic glass composite via digital image correlation. International Journal of Minerals, Metallurgy<br>and Materials, 2022, 29, 807-813.                                                                                                                      | 2.4                                                     | 1             |