RÃ³isÃ-n M Owens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1368094/publications.pdf Version: 2024-02-01

PÃ3ICÃN M OWENS

#	Article	IF	CITATIONS
1	Biomembranes in bioelectronic sensing. Trends in Biotechnology, 2022, 40, 107-123.	9.3	12
2	Biostack: Nontoxic Metabolite Detection from Live Tissue. Advanced Science, 2022, 9, e2101711.	11.2	8
3	Impedance sensing of antibiotic interactions with a pathogenic E. coli outer membrane supported bilayer. Biosensors and Bioelectronics, 2022, 204, 114045.	10.1	6
4	Organic Bioelectronics for <i>In Vitro</i> Systems. Chemical Reviews, 2022, 122, 4700-4790.	47.7	49
5	Understanding electrochemical properties of supported lipid bilayers interfaced with organic electronic devices. Journal of Materials Chemistry C, 2022, 10, 8050-8060.	5.5	20
6	The Role of Longâ€Alkylâ€Group Spacers in Glycolated Copolymers for Highâ€Performance Organic Electrochemical Transistors. Advanced Materials, 2022, 34, e2202574.	21.0	21
7	Investigation of Host–Microbe–Parasite Interactions in an In Vitro 3D Model of the Vertebrate Gut. Advanced Biology, 2022, 6, .	2.5	6
8	Nanoscale Features of Tunable Bacterial Outer Membrane Models Revealed by Correlative Microscopy. Langmuir, 2022, 38, 8773-8782.	3.5	7
9	3D Bioelectronic Model of the Human Intestine. Advanced Biology, 2021, 5, 2000306.	2.5	28
10	Advances in modelling the human microbiome–gut–brain axis <i>in vitro</i> . Biochemical Society Transactions, 2021, 49, 187-201.	3.4	25
11	Advances in microfluidic <i>in vitro</i> systems for neurological disease modeling. Journal of Neuroscience Research, 2021, 99, 1276-1307.	2.9	56
12	Microfluidics and materials for smart water monitoring: A review. Analytica Chimica Acta, 2021, 1186, 338392.	5.4	30
13	Measuring cellular contraction: Current progress and a future in bioelectronics. APL Materials, 2021, 9, .	5.1	9
14	In Vitro Models for Studying Respiratory Host–Pathogen Interactions. Advanced Biology, 2021, 5, e2000624.	2.5	16
15	An electroactive and thermo-responsive material for the capture and release of cells. Biosensors and Bioelectronics, 2021, 191, 113405.	10.1	4
16	Functional Infectious Nanoparticle Detector: Finding Viruses by Detecting Their Host Entry Functions Using Organic Bioelectronic Devices. ACS Nano, 2021, 15, 18142-18152.	14.6	19
17	Electrolyte-gated transistors for enhanced performance bioelectronics. Nature Reviews Methods Primers, 2021, 1, .	21.2	172
18	Detection of Ganglioside-Specific Toxin Binding with Biomembrane-Based Bioelectronic Sensors. ACS Applied Bio Materials, 2021, 4, 7942-7950.	4.6	7

14

#	Article	IF	CITATIONS
19	Dual Mode Sensing of Binding and Blocking of Cancer Exosomes to Biomimetic Human Primary Stem Cell Surfaces. ACS Biomaterials Science and Engineering, 2021, , .	5.2	1
20	Organic Transistors Incorporating Lipid Monolayers for Drug Interaction Studies. Advanced Materials Technologies, 2020, 5, 1900680.	5.8	17
21	A highly sensitive molecular structural probe applied to in situ biosensing of metabolites using PEDOT:PSS. Biotechnology and Bioengineering, 2020, 117, 291-299.	3.3	26
22	Materials for blood brain barrier modeling in vitro. Materials Science and Engineering Reports, 2020, 140, 100522.	31.8	51
23	Building Scaffolds for Tubular Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 2020, 8, 589960.	4.1	29
24	Self-Assembly of Mammalian-Cell Membranes on Bioelectronic Devices with Functional Transmembrane Proteins. Langmuir, 2020, 36, 7325-7331.	3.5	36
25	Optical and Electronic Ion Channel Monitoring from Native Human Membranes. ACS Nano, 2020, 14, 12538-12545.	14.6	51
26	Small molecule additive for low-power accumulation mode organic electrochemical transistors. Journal of Materials Chemistry C, 2020, 8, 8846-8855.	5.5	14
27	Monitoring supported lipid bilayers with n-type organic electrochemical transistors. Materials Horizons, 2020, 7, 2348-2358.	12.2	42
28	Tailoring PEDOT properties for applications in bioelectronics. Materials Science and Engineering Reports, 2020, 140, 100546.	31.8	140
29	Biomimetic and electroactive 3D scaffolds for human neural crest-derived stem cell expansion and osteogenic differentiation. MRS Communications, 2020, 10, 179-187.	1.8	19
30	Synthesis and characterisation of biocompatible organic–inorganic core–shell nanocomposite particles based on ureasils. Journal of Materials Chemistry B, 2020, 8, 4908-4916.	5.8	6
31	Facile Generation of Biomimetic-Supported Lipid Bilayers on Conducting Polymer Surfaces for Membrane Biosensing. ACS Applied Materials & Interfaces, 2019, 11, 43799-43810.	8.0	41
32	3D Hybrid Scaffolds Based on PEDOT:PSS/MWCNT Composites. Frontiers in Chemistry, 2019, 7, 363.	3.6	39
33	Organic Bioelectronics: Effect of E Cigarette Emissions on Tracheal Cells Monitored at the Air–Liquid Interface Using an Organic Electrochemical Transistor (Adv. Biosys. 3/2019). Advanced Biology, 2019, 3, 1970034.	3.0	0
34	3D Biointerfaces: Electron Microscopy for 3D Scaffolds–Cell Biointerface Characterization (Adv.) Tj ETQq0 0 0	rgBT/Ove	rlock 10 Tf 5(
35	BMP-2 functionalized PEDOT:PSS-based OECTs for stem cell osteogenic differentiation monitoring. Flexible and Printed Electronics, 2019, 4, 044006.	2.7	11

Effect of E Cigarette Emissions on Tracheal Cells Monitored at the Air–Liquid Interface Using an
Organic Electrochemical Transistor. Advanced Biology, 2019, 3, e1800249.

RóisÃ₦ M Owens

#	Article	IF	CITATIONS
37	Electron Microscopy for 3D Scaffolds–Cell Biointerface Characterization. Advanced Biology, 2019, 3, e1800103.	3.0	21
38	A planar impedance sensor for 3D spheroids. Lab on A Chip, 2018, 18, 933-943.	6.0	30
39	Organic electrochemical transistors. Nature Reviews Materials, 2018, 3, .	48.7	1,143
40	Organic Electronics for Point-of-Care Metabolite Monitoring. Trends in Biotechnology, 2018, 36, 45-59.	9.3	104
41	Neurospheres on Patterned PEDOT:PSS Microelectrode Arrays Enhance Electrophysiology Recordings. Advanced Biology, 2018, 2, 1700164.	3.0	26
42	Organic Electronic Devices as Multi-Modal Transducers of Cellular Activity. Proceedings (mdpi), 2018, 2, 1102.	0.2	0
43	Transistor in a tube: A route to three-dimensional bioelectronics. Science Advances, 2018, 4, eaat4253.	10.3	78
44	Direct metabolite detection with an n-type accumulation mode organic electrochemical transistor. Science Advances, 2018, 4, eaat0911.	10.3	183
45	Conducting Polymer Scaffolds Based on Poly(3,4-ethylenedioxythiophene) and Xanthan Gum for Live-Cell Monitoring. ACS Omega, 2018, 3, 7424-7431.	3.5	55
46	Biomimetic Electronic Devices for Measuring Bacterial Membrane Disruption. Advanced Materials, 2018, 30, e1803130.	21.0	43
47	Lactate Detection in Tumor Cell Cultures Using Organic Transistor Circuits. Advanced Materials, 2017, 29, 1605744.	21.0	123
48	Polyelectrolyte Layer-by-Layer Assembly on Organic Electrochemical Transistors. ACS Applied Materials & Interfaces, 2017, 9, 10427-10434.	8.0	43
49	A Microfluidic Ion Pump for In Vivo Drug Delivery. Advanced Materials, 2017, 29, 1701217.	21.0	97
50	Conducting Polymer Scaffolds for Hosting and Monitoring 3D Cell Culture. Advanced Biology, 2017, 1, 1700052.	3.0	89
51	PEDOT:PSS microelectrode arrays for hippocampal cell culture electrophysiological recordings. MRS Communications, 2017, 7, 259-265.	1.8	34
52	Saccharomyces boulardii CNCM I-745 Restores intestinal Barrier Integrity by Regulation of E-cadherin Recycling. Journal of Crohn's and Colitis, 2017, 11, 999-1010.	1.3	36
53	A (bio) materials approach to three-dimensional cell biology. MRS Communications, 2017, 7, 287-288.	1.8	5
54	Organic transistor platform with integrated microfluidics for in-line multi-parametric in vitro cell monitoring. Microsystems and Nanoengineering, 2017, 3, 17028.	7.0	79

#	Article	IF	CITATIONS
55	Laser Patterning of Selfâ€Assembled Monolayers on PEDOT:PSS Films for Controlled Cell Adhesion. Advanced Materials Interfaces, 2017, 4, 1700191.	3.7	28
56	Referenceless pH Sensor using Organic Electrochemical Transistors. Advanced Materials Technologies, 2017, 2, 1600141.	5.8	72
57	Catalytically enhanced organic transistors for <i>in vitro</i> toxicology monitoring through hydrogel entrapment of enzymes. Journal of Applied Polymer Science, 2017, 134, .	2.6	35
58	Sa1422 Saccharomyces boulardii CNCM I-745 Strengthen Intestinal Epithelial Barrier Through Action on E-Cadherin-Catenin Complex. Gastroenterology, 2016, 150, S311.	1.3	0
59	Supported Lipid Bilayer Assembly on PEDOT:PSS Films and Transistors. Advanced Functional Materials, 2016, 26, 7304-7313.	14.9	62
60	Autoclave Sterilization of PEDOT:PSS Electrophysiology Devices. Advanced Healthcare Materials, 2016, 5, 3094-3098.	7.6	46
61	Organic Transistor Arrays Integrated with Fingerâ€Powered Microfluidics for Multianalyte Saliva Testing. Advanced Healthcare Materials, 2016, 5, 2295-2302.	7.6	164
62	Conducting polymer scaffolds for electrical control of cellular functions (Conference) Tj ETQq0 0 0 rgBT /Overl	ock 10 Tf 50	0 462 Td (Pre
63	Early Detection of Nephrotoxicity <i>In Vitro</i> Using a Transparent Conducting Polymer Device. Applied in Vitro Toxicology, 2016, 2, 17-25.	1.1	7
64	Biofunctionalization of polydioxythiophene derivatives for biomedical applications. Journal of Materials Chemistry B, 2016, 4, 4952-4968.	5.8	74
65	Nanostructured conducting polymers for stiffness controlled cell adhesion. Nanotechnology, 2016, 27, 074001.	2.6	15
66	Screen-printed organic electrochemical transistors for metabolite sensing. MRS Communications, 2015, 5, 507-511.	1.8	47
67	Using white noise to gate organic transistors for dynamic monitoring of cultured cell layers. Scientific Reports, 2015, 5, 11613.	3.3	32
68	Optimization of a Planar Allâ€Polymer Transistor for Characterization of Barrier Tissue. ChemPhysChem, 2015, 16, 1210-1216.	2.1	24
69	High-performance transistors for bioelectronics through tuning of channel thickness. Science Advances, 2015, 1, e1400251.	10.3	501
70	Electrochemistry provides a simple way to monitor Pseudomonas aeruginosa metabolites. , 2015, 2015, 7522-5.		8
71	Detection of fibronectin conformational changes in the extracellular matrix of live cells using plasmonic nanoplates. Journal of Materials Chemistry B, 2015, 3, 9140-9147.	5.8	12

⁷²The organic electrochemical transistor for biological applications. Journal of Applied Polymer2.626272Science, 2015, 132, .

#	Article	IF	CITATIONS
73	Monitoring of cell layer coverage and differentiation with the organic electrochemical transistor. Journal of Materials Chemistry B, 2015, 3, 5971-5977.	5.8	60
74	Organic electrochemical transistors for cell-based impedance sensing. Applied Physics Letters, 2015, 106, .	3.3	96
75	Fully printed metabolite sensor using organic electrochemical transistor. Proceedings of SPIE, 2015, , .	0.8	4
76	Research Update: Electrical monitoring of cysts using organic electrochemical transistors. APL Materials, 2015, 3, .	5.1	9
77	Large area CMOS bio-pixel array for compact high sensitive multiplex biosensing. Lab on A Chip, 2015, 15, 877-881.	6.0	10
78	Organic electrochemical transistors as impedance biosensors. MRS Communications, 2014, 4, 189-194.	1.8	37
79	Ionic Liquid Gelâ€Assisted Electrodes for Longâ€Term Cutaneous Recordings. Advanced Healthcare Materials, 2014, 3, 1377-1380.	7.6	83
80	Dynamic Monitoring of <i>Salmonella typhimurium</i> Infection of Polarized Epithelia Using Organic Transistors. Advanced Healthcare Materials, 2014, 3, 1053-1060.	7.6	57
81	Conducting polymer thin films as substrates for cell cultures. Materials Research Society Symposia Proceedings, 2014, 1624, 1.	0.1	0
82	The Rise of Organic Bioelectronics. Chemistry of Materials, 2014, 26, 679-685.	6.7	579
83	Probing the specific ion effects of biocompatible hydrated choline ionic liquids on lactate oxidase biofunctionality in sensor applications. Physical Chemistry Chemical Physics, 2014, 16, 1841-1849.	2.8	29
84	A facile biofunctionalisation route for solution processable conducting polymer devices. Journal of Materials Chemistry B, 2014, 2, 2537-2545.	5.8	63
85	Combined Optical and Electronic Sensing of Epithelial Cells Using Planar Organic Transistors. Advanced Materials, 2014, 26, 7083-7090.	21.0	78
86	Sensing of Barrier Tissue Disruption with an Organic Electrochemical Transistor. Journal of Visualized Experiments, 2014, , e51102.	0.3	3
87	PEDOT:gelatin composites mediate brain endothelial cell adhesion. Journal of Materials Chemistry B, 2013, 1, 3860.	5.8	52
88	High transconductance organic electrochemical transistors. Nature Communications, 2013, 4, 2133.	12.8	612
89	Validation of the organic electrochemical transistor for in vitro toxicology. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 4381-4390.	2.4	31
90	Organic bioelectronics — Novel applications in biomedicine. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 4283-4285.	2.4	12

RóisÃ₦ M Owens

#	Article	IF	CITATIONS
91	Sensing of EGTA Mediated Barrier Tissue Disruption with an Organic Transistor. Biosensors, 2013, 3, 44-57.	4.7	43
92	Surface enhanced biodetection on a CMOS biosensor chip. Proceedings of SPIE, 2012, , .	0.8	0
93	Organic electrochemical transistor incorporating an ionogel as a solid state electrolyte for lactate sensing. Journal of Materials Chemistry, 2012, 22, 4440.	6.7	248
94	Measurement of Barrier Tissue Integrity with an Organic Electrochemical Transistor. Advanced Materials, 2012, 24, 5919-5923.	21.0	152
95	PEDOT:TOS with PEG: a biofunctional surface with improved electronic characteristics. Journal of Materials Chemistry, 2012, 22, 19498.	6.7	42
96	Complex Structure of Engineered Modular Domains Defining Molecular Interaction between ICAM-1 and Integrin LFA-1. PLoS ONE, 2012, 7, e44124.	2.5	3
97	Electrochemical transistors with ionic liquids for enzymatic sensing. Proceedings of SPIE, 2011, , .	0.8	1
98	Wearable electrochemical sensors for monitoring performance athletes. Proceedings of SPIE, 2011, , .	0.8	15
99	Engineering of Single Ig Superfamily Domain of Intercellular Adhesion Molecule 1 (ICAM-1) for Native Fold and Function. Journal of Biological Chemistry, 2010, 285, 15906-15915.	3.4	12
100	Organic Electronics at the Interface with Biology. MRS Bulletin, 2010, 35, 449-456.	3.5	265
101	Electrochemical transistors with ionic liquids for enzymatic sensing. Chemical Communications, 2010, 46, 7972.	4.1	110
102	Real-time quantitation of viral replication and inhibitor potency using a label-free optical biosensor. Journal of Receptor and Signal Transduction Research, 2009, 29, 195-201.	2.5	17
103	All-Plastic Electrochemical Transistor for Glucose Sensing Using a Ferrocene Mediator. Sensors, 2009, 9, 9896-9902.	3.8	104
104	Transposition into Replicating DNA Occurs through Interaction with the Processivity Factor. Cell, 2009, 138, 685-695.	28.9	64
105	Integration of a surface-directed microfluidic system with an organic electrochemical transistor array for multi-analyte biosensors. Lab on A Chip, 2009, 9, 704-708.	6.0	74
106	Simple glucose sensors with micromolar sensitivity based on organic electrochemical transistors. Sensors and Actuators B: Chemical, 2007, 123, 374-378.	7.8	134
107	Structural characterization of phosphatidyl-myo-inositol mannosides from Mycobacterium bovis bacillus calmette guérin by multiple-stage quadrupole ion-trap mass spectrometry with electrospray ionization. I. PIMs and Iyso-PIMs. Journal of the American Society for Mass Spectrometry, 2007, 18, 466-478.	2.8	48
108	Structural characterization of phosphatidyl-myo-inositol mannosides from Mycobacterium bovis bacillus calmette gúerin by multiple-stage quadrupole ion-trap mass spectrometry with electrospray ionization. II. Monoacyl- and diacyl-PIMs. Journal of the American Society for Mass Spectrometry, 2007, 18, 479-492.	2.8	52

#	Article	IF	CITATIONS
109	M. tuberculosis Rv2252 encodes a diacylglycerol kinase involved in the biosynthesis of phosphatidylinositol mannosides (PIMs). Molecular Microbiology, 2006, 60, 1152-1163.	2.5	17
110	Kinetics of phosphatidylinositol-3-phosphate acquisition differ between IgG bead-containing phagosomes and Mycobacterium tuberculosis-containing phagosomes. Cellular Microbiology, 2005, 7, 1627-1634.	2.1	32
111	A dedicated translation factor controls the synthesis of the global regulator Fis. EMBO Journal, 2004, 23, 3375-3385.	7.8	46
112	Copurification of the Lac Repressor with Polyhistidine-Tagged Proteins in Immobilized Metal Affinity Chromatography. Protein Expression and Purification, 2001, 21, 352-360.	1.3	7
113	The effect of homolog distribution on sodium alcohol sulfate solution viscosity. JAOCS, Journal of the American Oil Chemists' Society, 1978, 55, 300-302.	1.9	1
114	Stereochemistry of the Cycloaddition of Singlet Excited β-Substituted Styrenes to Olefins. Canadian Journal of Chemistry, 1972, 50, 1984-1986.	1.1	7
115	Monomolecular films of phenolic esters. Journal of Colloid and Interface Science, 1969, 29, 692-695.	9.4	2
116	The world is not flat: 3D cell biology integrated with 3D conducting polymer devices. , 0, , .		0
117	3D conducting polymer scaffold devices for Organ-on-chip applications. , 0, , .		0