Kazushige Touhara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1368032/publications.pdf

Version: 2024-02-01

73 papers

6,161 citations

32 h-index 64 g-index

77 all docs

77
docs citations

77 times ranked

5306 citing authors

#	Article	IF	CITATIONS
1	Odorant metabolism of the olfactory cleft mucus in idiopathic olfactory impairment patients and healthy volunteers. International Forum of Allergy and Rhinology, 2022, 12, 293-301.	1.5	12
2	Genetic variation of olfactory receptor gene family in a Japanese population. Anthropological Science, 2022, 130, 93-106.	0.2	3
3	Hemoglobin in the blood acts as a chemosensory signal via the mouse vomeronasal system. Nature Communications, 2022, 13, 556.	5.8	3
4	An olfactory self-test effectively screens for COVID-19. Communications Medicine, 2022, 2, .	1.9	10
5	Spatiotemporal dynamics of odor representations in the human brain revealed by EEG decoding. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2114966119.	3.3	15
6	A single vomeronasal receptor promotes intermale aggression through dedicated hypothalamic neurons. Neuron, 2022, 110, 2455-2469.e8.	3.8	9
7	Origin and Evolution of the Gene Family of Proteinaceous Pheromones, the Exocrine Gland-Secreting Peptides, in Rodents. Molecular Biology and Evolution, 2021, 38, 634-649.	3.5	0
8	Transcriptional regulators involved in responses to volatile organic compounds in plants. FASEB Journal, 2021, 35, .	0.2	0
9	Calcitonin receptor signaling in the medial preoptic area enables risk-taking maternal care. Cell Reports, 2021, 35, 109204.	2.9	32
10	CUBIC-Cloud provides an integrative computational framework toward community-driven whole-mouse-brain mapping. Cell Reports Methods, 2021, 1, 100038.	1.4	12
11	Comparative genomic analyses illuminate the distinct evolution of megabats within Chiroptera. DNA Research, 2020, 27, .	1.5	10
12	Response to Drea et al Current Biology, 2020, 30, R1357-R1358.	1.8	1
13	Response to Kappeler. Current Biology, 2020, 30, R1360.	1.8	2
14	Key Male Glandular Odorants Attracting Female Ring-Tailed Lemurs. Current Biology, 2020, 30, 2131-2138.e4.	1.8	13
15	Versatile whole-organ/body staining and imaging based on electrolyte-gel properties of biological tissues. Nature Communications, 2020, 11, 1982.	5.8	134
16	Relationship Between Odor Intensity Estimates and COVID-19 Prevalence Prediction in a Swedish Population. Chemical Senses, 2020, 45, 449-456.	1.1	53
17	Mammalian Olfactory and Vomeronasal Receptor Families. , 2020, , 516-535.		O
18	Metabolism of Odorant Molecules in Human Nasal/Oral Cavity Affects the Odorant Perception. Chemical Senses, 2019, 44, 465-481.	1.1	41

#	Article	IF	Citations
19	Hypothalamic neuronal circuits regulating hunger-induced taste modification. Nature Communications, 2019, 10, 4560.	5.8	39
20	Fruit scent and observer colour vision shape food-selection strategies in wild capuchin monkeys. Nature Communications, 2019, 10, 2407.	5.8	34
21	Subjective unpleasantness of malodors induces a stress response. Psychoneuroendocrinology, 2019, 106, 206-215.	1.3	12
22	Electrophysiological correlates of top-down attentional modulation in olfaction. Scientific Reports, 2019, 9, 4953.	1.6	14
23	Individuals With Autism Spectrum Disorder Show Altered Event-Related Potentials in the Late Stages of Olfactory Processing. Chemical Senses, 2019, 45, 37-44.	1.1	2
24	Transcriptional regulators involved in responses to volatile organic compounds in plants. Journal of Biological Chemistry, 2019, 294, 2256-2266.	1.6	56
25	Contribution of individual olfactory receptors to odor-induced attractive or aversive behavior in mice. Nature Communications, 2019, 10, 209.	5.8	37
26	A sexual rejection peptide: potential use for controlling mouse overpopulation. Bioscience, Biotechnology and Biochemistry, 2019, 83, 705-708.	0.6	0
27	Neural circuits regulating sexual behaviors via the olfactory system in mice. Neuroscience Research, 2019, 140, 59-76.	1.0	37
28	Acceleration of Olfactory Receptor Gene Loss in Primate Evolution: Possible Link to Anatomical Change in Sensory Systems and Dietary Transition. Molecular Biology and Evolution, 2018, 35, 1437-1450.	3.5	102
29	Identification of an Intra- and Inter-specific Tear Protein Signal in Rodents. Current Biology, 2018, 28, 1213-1223.e6.	1.8	27
30	Sexual rejection via a vomeronasal receptor-triggered limbic circuit. Nature Communications, 2018, 9, 4463.	5.8	43
31	G Protein-Coupled Receptor Kinase 3 (GRK3) in Olfaction. Methods in Molecular Biology, 2018, 1820, 33-41.	0.4	0
32	Identification and characterization of the bombykal receptor in the hawkmoth <i>Manduca sexta</i> Journal of Experimental Biology, 2017, 220, 1781-1786.	0.8	25
33	A Labeled-Line Neural Circuit for Pheromone-Mediated Sexual Behaviors in Mice. Neuron, 2017, 95, 123-137.e8.	3.8	141
34	Structural insights into the nucleotide base specificity of P2X receptors. Scientific Reports, 2017, 7, 45208.	1.6	41
35	A long-range cis-regulatory element for class I odorant receptor genes. Nature Communications, 2017, 8, 885.	5.8	28
36	Exocrine Gland-Secreting Peptide 1 Is a Key Chemosensory Signal Responsible for the Bruce Effect in Mice. Current Biology, 2017, 27, 3197-3201.e3.	1.8	25

3

#	Article	IF	CITATIONS
37	Male mice ultrasonic vocalizations enhance female sexual approach and hypothalamic kisspeptin neuron activity. Hormones and Behavior, 2017, 94, 53-60.	1.0	41
38	Vertebrate Odorant Receptors. , 2016, , 49-66.		5
39	Self-Exposure to the Male Pheromone ESP1 Enhances Male Aggressiveness in Mice. Current Biology, 2016, 26, 1229-1234.	1.8	37
40	Ligand Specificity and Evolution of Mammalian Musk Odor Receptors: Effect of Single Receptor Deletion on Odor Detection. Journal of Neuroscience, 2016, 36, 4482-4491.	1.7	53
41	Child Odors and Parenting: A Survey Examination of the Role of Odor in Child-Rearing. PLoS ONE, 2016, 11, e0154392.	1.1	18
42	Mechanisms of Musk Odor Perception. Kagaku To Seibutsu, 2015, 53, 774-781.	0.0	0
43	Modification of Male Courtship Motivation by Olfactory Habituation via the GABAA Receptor in Drosophila melanogaster. PLoS ONE, 2015, 10, e0135186.	1.1	9
44	Light generation of intracellular Ca2+ signals by a genetically encoded protein BACCS. Nature Communications, 2015, 6, 8021.	5.8	67
45	Amino acid coevolution reveals three-dimensional structure and functional domains of insect odorant receptors. Nature Communications, 2015, 6, 6077.	5.8	113
46	Enantioselective recognition of menthol by mouse odorant receptors. Bioscience, Biotechnology and Biochemistry, 2015, 79, 1980-1986.	0.6	6
47	Frontiers in the olfactory research: from odor signals, to receptors, and to the brain. Journal of Japan Association on Odor Environment, 2015, 46, 259-260.	0.1	0
48	Odor and Pheromone Molecules, Receptors, and Behavioral Responses., 2014, , 19-38.		3
49	Evaluation of the Role of G Protein-Coupled Receptor Kinase 3 in Desensitization of Mouse Odorant Receptors in a Mammalian Cell Line and in Olfactory Sensory Neurons. Chemical Senses, 2014, 39, 771-780.	1.1	14
50	Extreme expansion of the olfactory receptor gene repertoire in African elephants and evolutionary dynamics of orthologous gene groups in 13 placental mammals. Genome Research, 2014, 24, 1485-1496.	2.4	287
51	Olfactory Receptor and Neural Pathway Responsible for Highly Selective Sensing of Musk Odors. Neuron, 2014, 81, 165-178.	3.8	87
52	Structure and function of a peptide pheromone family that stimulate the vomeronasal sensory system in mice. Biochemical Society Transactions, 2014, 42, 873-877.	1.6	15
53	A juvenile mouse pheromone inhibits sexual behaviour through the vomeronasal system. Nature, 2013, 502, 368-371.	13.7	151
54	An unsaturated aliphatic alcohol as a natural ligand for a mouse odorant receptor. Nature Chemical Biology, 2013, 9, 160-162.	3.9	65

4

#	Article	IF	CITATIONS
55	Extracellular Modulation of the Silkmoth Sex Pheromone Receptor Activity by Cyclic Nucleotides. PLoS ONE, 2013, 8, e63774.	1.1	7
56	Amino Acid Residues Contributing to Function of the Heteromeric Insect Olfactory Receptor Complex. PLoS ONE, 2012, 7, e32372.	1.1	131
57	The scent of disease: volatile organic compounds of the human body related to disease and disorder. Journal of Biochemistry, 2011, 150, 257-266.	0.9	446
58	The male mouse pheromone ESP1 enhances female sexual receptive behaviour through a specific vomeronasal receptor. Nature, 2010, 466, 118-122.	13.7	340
59	Dimethyl Trisulfide as a Characteristic Odor Associated with Fungating Cancer Wounds. Bioscience, Biotechnology and Biochemistry, 2009, 73, 2117-2120.	0.6	75
60	Mammalian olfactory receptors: pharmacology, G protein coupling and desensitization. Cellular and Molecular Life Sciences, 2009, 66, 3743-3753.	2.4	98
61	Sensing Odorants and Pheromones with Chemosensory Receptors. Annual Review of Physiology, 2009, 71, 307-332.	5.6	487
62	Molecular Biology of Peptide Pheromone Production and Reception in Mice. Advances in Genetics, 2007, 59, 147-171.	0.8	24
63	Deorphanizing vertebrate olfactory receptors: Recent advances in odorant-response assays. Neurochemistry International, 2007, 51, 132-139.	1.9	59
64	Sex- and Strain-Specific Expression and Vomeronasal Activity of Mouse ESP Family Peptides. Current Biology, 2007, 17, 1879-1884.	1.8	135
65	Odorant Receptor Map in the Mouse Olfactory Bulb: In Vivo Sensitivity and Specificity of Receptor-Defined Glomeruli. Neuron, 2006, 52, 857-869.	3.8	172
66	Sex-specific peptides from exocrine glands stimulate mouse vomeronasal sensory neurons. Nature, 2005, 437, 898-901.	13.7	335
67	Insect Sex-Pheromone Signals Mediated by Specific Combinations of Olfactory Receptors. Science, 2005, 307, 1638-1642.	6.0	466
68	Structural Basis for a Broad But Selective Ligand Spectrum of a Mouse Olfactory Receptor: Mapping the Odorant-Binding Site. Journal of Neuroscience, 2005, 25, 1806-1815.	1.7	278
69	Identification and functional characterization of a sex pheromone receptor in the silkmoth Bombyx mori. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16653-16658.	3.3	366
70	Structural determinants for membrane trafficking and Gprotein selectivity of a mouse olfactory receptor. Journal of Neurochemistry, 2004, 90, 1453-1463.	2.1	73
71	Olfactory receptor antagonism between odorants. EMBO Journal, 2004, 23, 120-126.	3.5	237
72	Odorant response assays for a heterologously expressed olfactory receptor. Biochemical and Biophysical Research Communications, 2003, 305, 964-969.	1.0	122

#	Article	IF	CITATIONS
73	Molecular Bases of Odor Discrimination: Reconstitution of Olfactory Receptors that Recognize Overlapping Sets of Odorants. Journal of Neuroscience, 2001, 21, 6018-6025.	1.7	322