John Sweller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1367956/publications.pdf Version: 2024-02-01

IOHN SWELLED

#	Article	IF	CITATIONS
1	Measuring cognitive load. Perspectives on Medical Education, 2022, 7, 1-2.	3.5	53
2	The advantages of listening to academic content in a second language may be outweighed by disadvantages: A cognitive load theory approach. British Journal of Educational Psychology, 2022, 92, 627-644.	2.9	4
3	The Role of Evolutionary Psychology in Our Understanding of Human Cognition: Consequences for Cognitive Load Theory and Instructional Procedures. Educational Psychology Review, 2022, 34, 2229-2241.	8.4	22
4	There is an Evidence Crisis in Science Educational Policy. Educational Psychology Review, 2022, 34, 1157-1176.	8.4	21
5	Comparing face-to-face and computer-mediated collaboration when teaching EFL writing skills. Educational Psychology, 2021, 41, 5-24.	2.7	12
6	Instructional Design. , 2021, , 4159-4163.		4
7	Spacing and Interleaving Effects Require Distinct Theoretical Bases: a Systematic Review Testing the Cognitive Load and Discriminative-Contrast Hypotheses. Educational Psychology Review, 2021, 33, 1499-1522.	8.4	20
8	How language background impacts learners studying International Financial Reporting Standards: a cognitive load theory perspective. Accounting Education, 2021, 30, 439-450.	3.8	2
9	The effect of narrative-based E-learning systems on novice users' cognitive load while learning software applications. Educational Technology Research and Development, 2021, 69, 2451.	2.8	9
10	From Theory to Practice: The Application of Cognitive Load Theory to the Practice of Medicine. Academic Medicine, 2021, 96, 24-30.	1.6	57
11	Implications of Cognitive Load Theory for Multimedia Learning. , 2021, , 73-81.		4
12	The Split-Attention Principle in Multimedia Learning. , 2021, , 199-211.		3
13	The Transient Information Principle in Multimedia Learning. , 2021, , 268-274.		2
14	Cognitive load theory and educational technology. Educational Technology Research and Development, 2020, 68, 1-16.	2.8	236
15	Problem-solving or Explicit Instruction: Which Should Go First When Element Interactivity Is High?. Educational Psychology Review, 2020, 32, 229-247.	8.4	35
16	The Modality Effect of Cognitive Load Theory. Advances in Intelligent Systems and Computing, 2020, , 75-84.	0.6	12
17	Altering element interactivity and variability in exampleâ€practice sequences to enhance learning to write Chinese characters. Applied Cognitive Psychology, 2020, 34, 837-843.	1.6	17
18	Effects of group experience and information distribution on collaborative learning. Instructional Science, 2019, 47, 531-550.	2.0	28

#	Article	IF	CITATIONS
19	Cognitive Architecture and Instructional Design: 20ÂYears Later. Educational Psychology Review, 2019, 31, 261-292.	8.4	701
20	Effects of prior knowledge on collaborative and individual learning. Learning and Instruction, 2019, 63, 101214.	3.2	50
21	Cognitive Load Theory, Resource Depletion and the Delayed Testing Effect. Educational Psychology Review, 2019, 31, 457-478.	8.4	28
22	The Variability Effect: When Instructional Variability Is Advantageous. Educational Psychology Review, 2019, 31, 479-497.	8.4	30
23	Instructional Visualizations, Cognitive Load Theory, and Visuospatial Processing. , 2019, , 111-143.		34
24	From Cognitive Load Theory to Collaborative Cognitive Load Theory. International Journal of Computer-Supported Collaborative Learning, 2018, 13, 213-233.	3.0	221
25	The Curious Case of Improving Foreign Language Listening Skills by Reading Rather than Listening: an Expertise Reversal Effect. Educational Psychology Review, 2018, 30, 1139-1165.	8.4	25
26	Extending Cognitive Load Theory to Incorporate Working Memory Resource Depletion: Evidence from the Spacing Effect. Educational Psychology Review, 2018, 30, 483-501.	8.4	119
27	Undesirable Difficulty Effects in the Learning of High-Element Interactivity Materials. Frontiers in Psychology, 2018, 9, 1483.	2.1	17
28	Collaborative learning effects when students have complete or incomplete knowledge. Applied Cognitive Psychology, 2018, 32, 681-692.	1.6	24
29	The Expertise Reversal Effect is a Variant of the More General Element Interactivity Effect. Educational Psychology Review, 2017, 29, 393-405.	8.4	100
30	Can collaborative learning improve the effectiveness of worked examples in learning mathematics?. Journal of Educational Psychology, 2017, 109, 666-679.	2.9	68
31	Cognitive Load Theory, Element Interactivity, and the Testing and Reverse Testing Effects. Applied Cognitive Psychology, 2017, 31, 265-280.	1.6	21
32	Should self-regulated learning be integrated with cognitive load theory? A commentary. Learning and Instruction, 2017, 51, 85-89.	3.2	36
33	Using cognitive load theory to structure computerâ€based learning including MOOCs. Journal of Computer Assisted Learning, 2017, 33, 293-305.	5.1	37
34	Relations between the worked example and generation effects on immediate and delayed tests. Learning and Instruction, 2016, 45, 20-30.	3.2	70
35	When Instructional Guidance is Needed. Educational and Developmental Psychologist, 2016, 33, 149-162.	0.7	26
36	Cognitive Load Theory, Evolutionary Educational Psychology, and Instructional Design. Evolutionary Psychology, 2016, , 291-306.	1.8	37

#	Article	IF	CITATIONS
37	Working memory, long-term memory, and instructional design Journal of Applied Research in Memory and Cognition, 2016, 5, 360-367.	1.1	100
38	Cognitive load theory and the effects of transient information on the modality effect. Instructional Science, 2016, 44, 107-123.	2.0	60
39	The impact of complexity on the expertise reversal effect: experimental evidence from testing accounting students. Educational Psychology, 2016, 36, 1868-1885.	2.7	16
40	The worked example effect, the generation effect, and element interactivity Journal of Educational Psychology, 2015, 107, 689-704.	2.9	92
41	Not New, but Nearly Forgotten: the Testing Effect Decreases or even Disappears as the Complexity of Learning Materials Increases. Educational Psychology Review, 2015, 27, 247-264.	8.4	103
42	High Element Interactivity Information During Problem Solving may Lead to Failure to Obtain the Testing Effect. Educational Psychology Review, 2015, 27, 291-304.	8.4	49
43	In Academe, What Is Learned, and How Is It Learned?. Current Directions in Psychological Science, 2015, 24, 190-194.	5.3	58
44	Domain-Specific Knowledge and Why Teaching Generic Skills Does Not Work. Educational Psychology Review, 2014, 26, 265-283.	8.4	151
45	Effectiveness of Combining Worked Examples and Deliberate Practice for High School Geometry. Applied Cognitive Psychology, 2014, 28, 685-692.	1.6	5
46	The Redundancy Principle in Multimedia Learning. , 2014, , 247-262.		104
47	Using a general problem-solving strategy to promote transfer Journal of Experimental Psychology: Applied, 2014, 20, 215-231.	1.2	14
48	The Effect of Worked Examples When Learning to Write Essays in English Literature. Journal of Experimental Education, 2013, 81, 385-408.	2.6	46
49	Reducing transience during animation: a cognitive load perspective. Educational Psychology, 2013, 33, 755-772.	2.7	16
50	Cognitive load theory, the transient information effect and e-learning. Learning and Instruction, 2012, 22, 449-457.	3.2	189
51	Using General Problemâ€solving Strategies to Generate Ideas in Order to Solve Geography Problems. Applied Cognitive Psychology, 2012, 26, 872-877.	1.6	17
52	Redundancy and expertise reversal effects when using educational technology to learn primary school science. Educational Technology Research and Development, 2012, 60, 1-13.	2.8	37
53	An Evolutionary Upgrade of Cognitive Load Theory: Using the Human Motor System and Collaboration to Support the Learning of Complex Cognitive Tasks. Educational Psychology Review, 2012, 24, 27-45.	8.4	328

54 Intrinsic and Extraneous Cognitive Load. , 2011, , 57-69.

#	Article	IF	CITATIONS
55	Cognitive Load Theory. , 2011, , .		1,196
56	Teaching Methods to Complement Competencies in Reducing the "Junkyard―Curriculum in Clinical Psychology. Australian Psychologist, 2011, 46, 90-100.	1.6	13
57	Cognitive load theory, modality of presentation and the transient information effect. Applied Cognitive Psychology, 2011, 25, 943-951.	1.6	226
58	Interactions between the isolated–interactive elements effect and levels of learner expertise: experimental evidence from an accountancy class. Instructional Science, 2010, 38, 277-287.	2.0	57
59	Element Interactivity and Intrinsic, Extraneous, and Germane Cognitive Load. Educational Psychology Review, 2010, 22, 123-138.	8.4	1,075
60	Cognitive Load Theory: New Conceptualizations, Specifications, and Integrated Research Perspectives. Educational Psychology Review, 2010, 22, 115-121.	8.4	236
61	Cognitive Load Theory: Advances in Research on Worked Examples, Animations, and Cognitive Load Measurement. Educational Psychology Review, 2010, 22, 375-378.	8.4	50
62	Cognitive load theory in health professional education: design principles and strategies. Medical Education, 2010, 44, 85-93.	2.1	927
63	Worked example effects in individual and group work settings. Educational Psychology, 2010, 30, 349-367.	2.7	48
64	Cognitive Bases of Human Creativity. Educational Psychology Review, 2009, 21, 11-19.	8.4	70
65	The Mirror Neuron System and Observational Learning: Implications for the Effectiveness of Dynamic Visualizations. Educational Psychology Review, 2009, 21, 21-30.	8.4	202
66	The worked-example effect using ill-defined problems: Learning to recognise designers' styles. Learning and Instruction, 2009, 19, 185-199.	3.2	81
67	The imagination effect increases with an increased intrinsic cognitive load. Applied Cognitive Psychology, 2008, 22, 273-283.	1.6	67
68	The consequences of fading instructional guidance on delayed performance: the case of financial services training. Educational Psychology, 2008, 28, 809-822.	2.7	15
69	Instructional Implications of David C. Geary's Evolutionary Educational Psychology. Educational Psychologist, 2008, 43, 214-216.	9.0	53
70	Why Minimally Guided Teaching Techniques Do Not Work: A Reply to Commentaries. Educational Psychologist, 2007, 42, 115-121.	9.0	288
71	Learner control, cognitive load and instructional animation. Applied Cognitive Psychology, 2007, 21, 713-729.	1.6	251
72	Why Minimal Guidance During Instruction Does Not Work: An Analysis of the Failure of Constructivist, Discovery, Problem-Based, Experiential, and Inquiry-Based Teaching. Educational Psychologist, 2006, 41, 75-86.	9.0	4,281

#	Article	IF	CITATIONS
73	Natural Information Processing Systems. Evolutionary Psychology, 2006, 4, 147470490600400.	0.9	176
74	Altering the Modality of Instructions to Facilitate Imagination: Interactions between the Modality and Imagination Effects. Instructional Science, 2006, 34, 343-365.	2.0	28
75	The impact of sequencing and prior knowledge on learning mathematics through spreadsheet applications. Educational Technology Research and Development, 2005, 53, 15-24.	2.8	149
76	Rapid dynamic assessment of expertise to improve the efficiency of adaptive e-learning. Educational Technology Research and Development, 2005, 53, 83-93.	2.8	198
77	Cognitive Load Theory and Complex Learning: Recent Developments and Future Directions. Educational Psychology Review, 2005, 17, 147-177.	8.4	1,337
78	Interactions Among the Imagination, Expertise Reversal, and Element Interactivity Effects Journal of Experimental Psychology: Applied, 2005, 11, 266-276.	1.2	57
79	Instructional Design Consequences of an Analogy between Evolution by Natural Selection and Human Cognitive Architecture. Instructional Science, 2004, 32, 9-31.	2.0	294
80	Cognitive load and the imagination effect. Applied Cognitive Psychology, 2004, 18, 857-875.	1.6	58
81	When Redundant On-Screen Text in Multimedia Technical Instruction Can Interfere With Learning. Human Factors, 2004, 46, 567-581.	3.5	168
82	Measuring Knowledge to Optimize Cognitive Load Factors During Instruction Journal of Educational Psychology, 2004, 96, 558-568.	2.9	146
83	Evolution of human cognitive architecture. Psychology of Learning and Motivation - Advances in Research and Theory, 2003, 43, 215-266.	1.1	208
84	The Expertise Reversal Effect. Educational Psychologist, 2003, 38, 23-31.	9.0	1,301
85	Assimilating complex information. Learning and Instruction, 2002, 12, 61-86.	3.2	458
86	When problem solving is superior to studying worked examples Journal of Educational Psychology, 2001, 93, 579-588.	2.9	378
87	Learning by imagining Journal of Experimental Psychology: Applied, 2001, 7, 68-82.	1.2	57
88	Incorporating learner experience into the design of multimedia instruction Journal of Educational Psychology, 2000, 92, 126-136.	2.9	331
89	Managing split-attention and redundancy in multimedia instruction. Applied Cognitive Psychology, 1999, 13, 351-371.	1.6	636
90	Cognitive Architecture and Instructional Design. Educational Psychology Review, 1998, 10, 251-296.	8.4	3,610

#	Article	IF	CITATIONS
91	Can we measure working memory without contamination from knowledge held in long-term memory?. Behavioral and Brain Sciences, 1998, 21, 845-846.	0.7	9
92	When two sensory modes are better than one Journal of Experimental Psychology: Applied, 1997, 3, 257-287.	1.2	309
93	Reducing cognitive load by mixing auditory and visual presentation modes Journal of Educational Psychology, 1995, 87, 319-334.	2.9	621
94	Cognitive load theory, learning difficulty, and instructional design. Learning and Instruction, 1994, 4, 295-312.	3.2	2,235
95	Why Some Material Is Difficult to Learn. Cognition and Instruction, 1994, 12, 185-233.	2.9	992
96	The effects of technical illustrations on cognitive load. Instructional Science, 1992, 20, 443-462.	2.0	26
97	Cognitive Load Theory and the Format of Instruction. Cognition and Instruction, 1991, 8, 293-332.	2.9	1,872
98	Cognitive Load During Problem Solving: Effects on Learning. Cognitive Science, 1988, 12, 257-285.	1.7	4,165
99	Guidance during mathematical problem solving Journal of Educational Psychology, 1988, 80, 424-436.	2.9	301
100	Effects of schema acquisition and rule automation on mathematical problem-solving transfer Journal of Educational Psychology, 1987, 79, 347-362.	2.9	447
101	The Use of Worked Examples as a Substitute for Problem Solving in Learning Algebra. Cognition and Instruction, 1985, 2, 59-89.	2.9	859
102	Control mechanisms in problem solving. Memory and Cognition, 1983, 11, 32-40.	1.6	37
103	Reply to Sana et al.'s (2022) Commentary on Rest-from-Deliberate-Learning as a Mechanism for the Spacing Effect. Educational Psychology Review, 0, , 1.	8.4	1