
## Kenneth D M Harris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1367927/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Mechanochemistry: opportunities for new and cleaner synthesis. Chemical Society Reviews, 2012, 41, 413-447.                                                                                                                                       | 38.1 | 2,281     |
| 2  | Contemporary Advances in the Use of Powder X-Ray Diffraction for Structure Determination.<br>Angewandte Chemie - International Edition, 2001, 40, 1626-1651.                                                                                      | 13.8 | 328       |
| 3  | Crystal Structure Determination from Powder Diffraction Data by Monte Carlo Methods. Journal of the American Chemical Society, 1994, 116, 3543-3547.                                                                                              | 13.7 | 311       |
| 4  | Triptycene-Based Polymers of Intrinsic Microporosity: Organic Materials That Can Be Tailored for Gas<br>Adsorption. Macromolecules, 2010, 43, 5287-5294.                                                                                          | 4.8  | 275       |
| 5  | Crystal Structure Determination from Powder Diffraction Data. Chemistry of Materials, 1996, 8, 2554-2570.                                                                                                                                         | 6.7  | 217       |
| 6  | Structural aspects of urea inclusion compounds and their investigation by X-ray diffraction: a general discussion. Journal of the Chemical Society, Faraday Transactions, 1990, 86, 2985.                                                         | 1.7  | 182       |
| 7  | How to determine structures when single crystals cannot be grown: opportunities for structure<br>determination of molecular materials using powder diffraction data. Chemical Society Reviews, 2004,<br>33, 526.                                  | 38.1 | 178       |
| 8  | Meldola Lecture: understanding the properties of urea and thiourea inclusion compounds. Chemical Society Reviews, 1997, 26, 279.                                                                                                                  | 38.1 | 141       |
| 9  | Direct Structure Determination of a Multicomponent Molecular Crystal Prepared by a Solid-State<br>Grinding Procedure. Journal of the American Chemical Society, 2003, 125, 14658-14659.                                                           | 13.7 | 134       |
| 10 | Nitrogen and Hydrogen Adsorption by an Organic Microporous Crystal. Angewandte Chemie -<br>International Edition, 2009, 48, 3273-3277.                                                                                                            | 13.8 | 132       |
| 11 | Mechanistic Insights into the Conversion of Cyclohexene to Adipic Acid by H2O2 in the Presence of a TAPO-5 Catalyst. Angewandte Chemie - International Edition, 2003, 42, 1520-1523.                                                              | 13.8 | 113       |
| 12 | Direct structure elucidation by powder X-ray diffraction of a metal–organic framework material prepared by solvent-free grinding. Chemical Communications, 2010, 46, 7572.                                                                        | 4.1  | 107       |
| 13 | Structure Determination of a Complex Organic Solid from X-Ray Powder Diffraction Data by a<br>Generalized Monte Carlo Method: The Crystal Structure of Red Fluorescein. Angewandte Chemie<br>International Edition in English, 1997, 36, 770-772. | 4.4  | 99        |
| 14 | Fundamental and Applied Aspects of Urea and Thiourea Inclusion Compounds. Supramolecular<br>Chemistry, 2007, 19, 47-53.                                                                                                                           | 1.2  | 94        |
| 15 | Powder Diffraction Crystallography of Molecular Solids. Topics in Current Chemistry, 2011, 315, 133-177.                                                                                                                                          | 4.0  | 86        |
| 16 | Exploiting the Synergy of Powder X-ray Diffraction and Solid-State NMR Spectroscopy in Structure<br>Determination of Organic Molecular Solids. Journal of Physical Chemistry C, 2013, 117, 12258-12265.                                           | 3.1  | 81        |
| 17 | New families of catalysts for the selective oxidation of methane. Faraday Discussions of the Chemical Society, 1989, 87, 33.                                                                                                                      | 2.2  | 79        |
| 18 | A Triphenylphoshine Oxideâ^'Water Aggregate Facilitates an Exceptionally Short Câ^'H···O Hydrogen<br>Bond. Journal of the American Chemical Society, 1997, 119, 12679-12680.                                                                      | 13.7 | 79        |

| #  | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Clustering of Glycine Molecules in Aqueous Solution Studied by Molecular Dynamics Simulation.<br>Journal of Physical Chemistry B, 2008, 112, 7280-7288.                                                                                         | 2.6  | 79        |
| 20 | Abundant Polymorphism in a System with Multiple Hydrogen-Bonding Opportunities:Â Oxalyl<br>Dihydrazide. Journal of the American Chemical Society, 2006, 128, 8441-8452.                                                                         | 13.7 | 76        |
| 21 | Structural properties of α,ï‰-dibromoalkane/urea inclusion compounds: a new type of interchannel guest<br>molecule ordering. Journal of the Chemical Society, Faraday Transactions, 1991, 87, 3423-3429.                                        | 1.7  | 74        |
| 22 | Weak interactions in crystal engineering—understanding the recognition properties of the nitro<br>group. New Journal of Chemistry, 2000, 24, 799-806.                                                                                           | 2.8  | 74        |
| 23 | An Adaptable and Dynamically Porous Organic Salt Traps Unique Tetrahalide Dianions. Angewandte<br>Chemie - International Edition, 2013, 52, 13444-13448.                                                                                        | 13.8 | 73        |
| 24 | Challenges in Direct-Space Structure Determination from Powder Diffraction Data: A Molecular<br>Material with Four Independent Molecules in the Asymmetric Unit. ChemPhysChem, 2004, 5, 414-418.                                                | 2.1  | 70        |
| 25 | Direct Structural Understanding of a Topochemical Solid State Photopolymerization Reaction.<br>Journal of Physical Chemistry C, 2008, 112, 19793-19796.                                                                                         | 3.1  | 70        |
| 26 | The crystal structure of l-arginine. Chemical Communications, 2012, 48, 2761.                                                                                                                                                                   | 4.1  | 70        |
| 27 | An NMR crystallography DFT-D approach to analyse the role of intermolecular hydrogen bonding and<br>Ï€â€"ï€ interactions in driving cocrystallisation of indomethacin and nicotinamide. CrystEngComm, 2013,<br>15, 8797.                        | 2.6  | 70        |
| 28 | Some of tomorrow's catalysts for processing renewable and non-renewable feedstocks, diminishing<br>anthropogenic carbon dioxide and increasing the production of energy. Energy and Environmental<br>Science, 2016, 9, 687-708.                 | 30.8 | 69        |
| 29 | Developments in genetic algorithm techniques for structure solution from powder diffraction data.<br>Zeitschrift Fur Kristallographie - Crystalline Materials, 2004, 219, 838-846.                                                              | 0.8  | 68        |
| 30 | Discovery of a New System Exhibiting Abundant Polymorphism: <i>m</i> -Aminobenzoic Acid. Crystal<br>Growth and Design, 2012, 12, 3104-3113.                                                                                                     | 3.0  | 68        |
| 31 | Crystal Structure Solution from Powder X-ray Diffraction Data:Â The Development of Monte Carlo<br>Methods To Solve the Crystal Structure of the γ-Phase of 3-Chloro-trans-cinnamic Acidâ€. Chemistry of<br>Materials, 1996, 8, 565-569.         | 6.7  | 66        |
| 32 | Structural Understanding of a Molecular Material that Is Accessed Only by a Solid-State Desolvation<br>Process:Â The Scope of Modern Powder X-ray Diffraction Techniques. Journal of the American Chemical<br>Society, 2005, 127, 7314-7315.    | 13.7 | 66        |
| 33 | Manometric real-time studies of the mechanochemical synthesis of zeolitic imidazolate frameworks.<br>Chemical Science, 2020, 11, 2141-2147.                                                                                                     | 7.4  | 64        |
| 34 | Evolving Opportunities in Structure Solution from Powder Diffraction Data—Crystal Structure<br>Determination of a Molecular System with Twelve Variable Torsion Angles. Angewandte Chemie -<br>International Edition, 1999, 38, 831-835.        | 13.8 | 62        |
| 35 | New Opportunities for Structure Determination of Molecular Materials Directly from Powder<br>Diffraction Data. Crystal Growth and Design, 2003, 3, 887-895.                                                                                     | 3.0  | 62        |
| 36 | Solid-State Supramolecular Organization, Established Directly from Powder Diffraction Data, and<br>Photoluminescence Efficiency of Rigid-Core Oligothiophene-S,S-dioxides. Journal of the American<br>Chemical Society, 2003, 125, 12277-12283. | 13.7 | 62        |

| #  | Article                                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Determination of a complex crystal structure in the absence of single crystals: analysis of powder<br>X-ray diffraction data, guided by solid-state NMR and periodic DFT calculations, reveals a new<br>2′-deoxyguanosine structural motif. Chemical Science, 2017, 8, 3971-3979. | 7.4  | 62        |
| 38 | Structure Determination of an Oligopeptide Directly from Powder Diffraction Data. Angewandte Chemie - International Edition, 2000, 39, 4488-4491.                                                                                                                                 | 13.8 | 61        |
| 39 | Development of a multipopulation parallel genetic algorithm for structure solution from powder diffraction data. Journal of Computational Chemistry, 2003, 24, 1766-1774.                                                                                                         | 3.3  | 60        |
| 40 | Conformational properties of monosubstituted cyclohexanes in their thiourea inclusion compounds and in solution: variable-temperature one-dimensional and two-dimensional carbon-13 NMR investigations. Journal of the American Chemical Society, 1993, 115, 6369-6377.           | 13.7 | 59        |
| 41 | Structure determination of a steroid directly from powder diffraction dataâ€. Chemical Communications, 1999, , 1677-1678.                                                                                                                                                         | 4.1  | 59        |
| 42 | Intermolecular organisation of triphenyleneÂbased discotic mesogens by interdigitation of alkyl<br>chains. Journal of Materials Chemistry, 2001, 11, 302-311.                                                                                                                     | 6.7  | 59        |
| 43 | A multi-technique approach for probing the evolution of structural properties during crystallization of organic materials from solution. Faraday Discussions, 2007, 136, 71.                                                                                                      | 3.2  | 58        |
| 44 | "CLASSIC NMR†An Inâ€Situ NMR Strategy for Mapping the Timeâ€Evolution of Crystallization Processes by Combined Liquidâ€State and Solidâ€State Measurements. Angewandte Chemie - International Edition, 2014, 53, 8939-8943.                                                       | 13.8 | 57        |
| 45 | Câ^'Hâ‹â‹O Hydrogen Bond Mediated Chain Reversal in a Peptide Containing a γ-Amino Acid Residue,<br>Determined Directly from Powder X-ray Diffraction Data. Angewandte Chemie - International Edition,<br>2002, 41, 494-496.                                                      | 13.8 | 55        |
| 46 | <scp>L</scp> â€Lysine: Exploiting Powder Xâ€ray Diffraction to Complete the Set of Crystal Structures of<br>the 20 Directly Encoded Proteinogenic Amino Acids. Angewandte Chemie - International Edition, 2015,<br>54, 3973-3977.                                                 | 13.8 | 55        |
| 47 | Combining the Advantages of Powder X-ray Diffraction and NMR Crystallography in Structure<br>Determination of the Pharmaceutical Material Cimetidine Hydrochloride. Crystal Growth and Design,<br>2016, 16, 1798-1804.                                                            | 3.0  | 55        |
| 48 | Understanding the Structural Properties of a Homologous Series of Bis-diphenylphosphine Oxides.<br>Chemistry - A European Journal, 2000, 6, 2338-2349.                                                                                                                            | 3.3  | 53        |
| 49 | A Technique for In Situ Monitoring of Crystallization from Solution by Solid-State <sup>13</sup> C<br>CPMAS NMR Spectroscopy. Journal of Physical Chemistry A, 2008, 112, 6808-6810.                                                                                              | 2.5  | 52        |
| 50 | Dynamic Properties of the Tetrahydrofuran Clathrate Hydrate, Investigated by Solid State2H NMR<br>Spectroscopy. Journal of Physical Chemistry B, 2001, 105, 2699-2706.                                                                                                            | 2.6  | 51        |
| 51 | Efficient, Scalable, and Solvent-free Mechanochemical Synthesis of the OLED Material<br>Alq <sub>3</sub> (q = 8-Hydroxyquinolinate). Crystal Growth and Design, 2012, 12, 5869-5872.                                                                                              | 3.0  | 51        |
| 52 | Predictable Disorder versus Polymorphism in the Rationalization of Structural Diversity: A<br>Multidisciplinary Study of Eniluracil. Crystal Growth and Design, 2008, 8, 3474-3481.                                                                                               | 3.0  | 49        |
| 53 | Direct observation of a transient polymorph during crystallization. Chemical Communications, 2010, 46, 4982.                                                                                                                                                                      | 4.1  | 49        |
| 54 | Structural aspects of the chlorocyclohexane/thiourea inclusion system. Journal of the Chemical<br>Society, Faraday Transactions, 1990, 86, 1095.                                                                                                                                  | 1.7  | 48        |

| #  | Article                                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Simple technique for temperature calibration of a MAS probe for solid-state NMR spectroscopy.<br>Magnetic Resonance in Chemistry, 1994, 32, 366-369.                                                                                                                     | 1.9  | 48        |
| 56 | Observation of the Sliding Mode in Incommensurate Intergrowth Compounds: Brillouin Scattering from the Inclusion Compound of Urea and Heptadecane. Physical Review Letters, 1995, 74, 734-737.                                                                           | 7.8  | 48        |
| 57 | Zigzag Channels in the Structure of Sebaconitrile/Urea. Angewandte Chemie International Edition in<br>English, 1994, 33, 649-652.                                                                                                                                        | 4.4  | 46        |
| 58 | Synthesis of layered nickel phosphonate materials based on a topotactic approach. Journal of<br>Materials Chemistry, 1998, 8, 579-584.                                                                                                                                   | 6.7  | 45        |
| 59 | Direct Time-Resolved and Spatially Resolved Monitoring of Molecular Transport in a Crystalline<br>Nanochannel System. Journal of the American Chemical Society, 2004, 126, 11124-11125.                                                                                  | 13.7 | 44        |
| 60 | A carbon-13 CP/MAS NMR study of a double tert-butyl group rotation in the solid state using T1.rho.<br>and line shape measurements. Journal of the American Chemical Society, 1993, 115, 1881-1885.                                                                      | 13.7 | 43        |
| 61 | Spring-Loading at the Molecular Level:  Relaxation of Guest-Induced Strain in Channel Inclusion<br>Compounds. Journal of the American Chemical Society, 1999, 121, 9732-9733.                                                                                            | 13.7 | 43        |
| 62 | Determination of a molecular crystal structure by X-ray powder diffraction on a conventional laboratory instrument. Journal of the Chemical Society Chemical Communications, 1992, , 1012.                                                                               | 2.0  | 42        |
| 63 | New Light on an Old Story:Â The Solid-State Transformation of Ammonium Cyanate into Urea. Journal<br>of the American Chemical Society, 1998, 120, 13274-13275.                                                                                                           | 13.7 | 42        |
| 64 | Physicochemical Understanding of Polymorphism and Solid-State Dehydration/Rehydration Processes<br>for the Pharmaceutical Material Acrinol, by Ab Initio Powder X-ray Diffraction Analysis and Other<br>Techniques. Journal of Physical Chemistry C, 2010, 114, 580-586. | 3.1  | 42        |
| 65 | Exploiting powder X-ray diffraction for direct structure determination in structural biology: The P2X4 receptor trafficking motif YEQGL. Journal of Structural Biology, 2011, 174, 461-467.                                                                              | 2.8  | 41        |
| 66 | How grinding evolves. Nature Chemistry, 2013, 5, 12-14.                                                                                                                                                                                                                  | 13.6 | 41        |
| 67 | Conformational and vibrational properties of α,ï‰-dihalogenoalkane/urea inclusion compounds: a Raman<br>scattering investigation. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 1313-1322.                                                            | 1.7  | 39        |
| 68 | Topochemical Rationalization of the Solid-State Polymerization Reaction of Sodium Chloroacetate:Â<br>Structure Determination from Powder Diffraction Data by the Monte Carlo Method. Journal of<br>Physical Chemistry B, 1997, 101, 8827-8831.                           | 2.6  | 39        |
| 69 | Comparison of the Thermal Stabilities of Diazonium Salts and Their Corresponding Triazenes. Organic<br>Process Research and Development, 2020, 24, 2336-2341.                                                                                                            | 2.7  | 39        |
| 70 | A new approach for indexing powder diffraction data based on whole-profile fitting and global optimization using a genetic algorithm. Journal of Synchrotron Radiation, 1999, 6, 87-92.                                                                                  | 2.4  | 38        |
| 71 | Vapour Induced Crystalline Transformation Investigated by ab initio Powder X-ray Diffraction<br>Analysis. Crystal Growth and Design, 2009, 9, 1201-1207.                                                                                                                 | 3.0  | 37        |
| 72 | Expanding the Solid-State Landscape of <scp>l</scp> -Phenylalanine: Discovery of Polymorphism and<br>New Hydrate Phases, with Rationalization of Hydration/Dehydration Processes. Journal of Physical<br>Chemistry C, 2013, 117, 12136-12145.                            | 3.1  | 37        |

| #  | Article                                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Contrasting Solid-State Structures of Trithiocyanuric Acid and Cyanuric Acid. Crystal Growth and Design, 2006, 6, 846-848.                                                                                                                                                    | 3.0  | 36        |
| 74 | Alteration of Polymorphic Selectivity through Different Crystallization Mechanisms Occurring in the Same Crystallization Solution. Journal of Physical Chemistry B, 2007, 111, 8705-8707.                                                                                     | 2.6  | 36        |
| 75 | Optical phonons in millerite (NiS) from singleâ€crystal polarized Raman spectroscopy. Journal of Raman<br>Spectroscopy, 2008, 39, 1419-1422.                                                                                                                                  | 2.5  | 36        |
| 76 | Powder X-ray diffraction studies of a low-temperature phase transition in the n-hexadecane/urea inclusion compound. Journal of the Chemical Society, Faraday Transactions, 1990, 86, 3135.                                                                                    | 1.7  | 35        |
| 77 | A quantitative analysis of guest periodicity in oneâ€dimensional inclusion compounds. Journal of<br>Chemical Physics, 1992, 96, 7117-7124.                                                                                                                                    | 3.0  | 34        |
| 78 | Theoretical prediction of the guest periodicity of alkane/urea inclusion compounds. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 2023.                                                                                                                    | 1.7  | 34        |
| 79 | Structural Rationalisation of Co-crystals Formed between Trithiocyanuric Acid and Molecules<br>Containing Hydrogen Bonding Functionality. Chemistry - A European Journal, 2005, 11, 2433-2439.                                                                                | 3.3  | 34        |
| 80 | The effect of deuteration on polymorphic outcome in the crystallization of glycine from aqueous solution. New Journal of Chemistry, 2009, 33, 713.                                                                                                                            | 2.8  | 34        |
| 81 | Discovery of New Metastable Polymorphs in a Family of Urea Co-Crystals by Solid-State<br>Mechanochemistry. Crystal Growth and Design, 2015, 15, 2901-2907.                                                                                                                    | 3.0  | 34        |
| 82 | Dynamic properties of dioctanoyl peroxide guest molecules constrained within the urea tunnel structure: A combined incoherent quasielastic neutron scattering and solid state 2H nuclear magnetic resonance investigation. Journal of Chemical Physics, 1998, 109, 4078-4089. | 3.0  | 33        |
| 83 | "Amorphous Nickel Sulfide―Is Hydrated Nanocrystalline NiS with a Coreâ^'Shell Structure. Inorganic<br>Chemistry, 2009, 48, 11486-11488.                                                                                                                                       | 4.0  | 32        |
| 84 | High-Resolution Solid-State <sup>2</sup> H NMR Spectroscopy of Polymorphs of Glycine. Journal of Physical Chemistry A, 2011, 115, 12201-12211.                                                                                                                                | 2.5  | 32        |
| 85 | Altering the Polymorphic Product Distribution in a Solid-State Dehydration Process by Rapid Sample<br>Rotation in a Solid-State NMR Probe. Journal of the American Chemical Society, 2005, 127, 10832-10833.                                                                  | 13.7 | 31        |
| 86 | Understanding the Structural Properties of a Dendrimeric Material Directly from Powder X-ray<br>Diffraction Data. Journal of Physical Chemistry B, 2006, 110, 11620-11623.                                                                                                    | 2.6  | 31        |
| 87 | Mapping the Evolution of Adsorption of Water in Nanoporous Silica by in situ Solid-State1H NMR Spectroscopy. Journal of the American Chemical Society, 2008, 130, 5880-5882.                                                                                                  | 13.7 | 31        |
| 88 | Highly Efficient Chiral Resolution of <scp>dl</scp> â€Arginine by Cocrystal Formation Followed by<br>Recrystallization under Preferentialâ€Enrichment Conditions. Chemistry - A European Journal, 2014, 20,<br>10343-10350.                                                   | 3.3  | 31        |
| 89 | Mathematical analysis of intra-stack dimerizations in reactive crystalline solids. Journal of the<br>Chemical Society, Faraday Transactions, 1991, 87, 325.                                                                                                                   | 1.7  | 30        |
| 90 | Recognition-Mediated Facilitation of a Disfavored Dielsâ^'Alder Reaction. Organic Letters, 1999, 1,<br>1087-1090.                                                                                                                                                             | 4.6  | 30        |

| #   | Article                                                                                                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Computational investigation of surface structural relaxation in crystalline urea. Journal of<br>Materials Chemistry, 1995, 5, 133.                                                                                                                                                                                                             | 6.7  | 29        |
| 92  | Structural and dynamic properties of the 1,10-dibromodecane/urea inclusion compound, investigated<br>by variable-temperature powder X-ray diffraction, solid-state2H NMR lineshape analysis and<br>solid-state2H NMR spin–lattice relaxation time measurements. Journal of the Chemical Society,<br>Faraday Transactions, 1996, 92, 2179-2185. | 1.7  | 29        |
| 93  | Design of a Solid Inclusion Compound with Optimal Properties as a Linear Dichroic Filter for X-ray<br>Polarization Analysis. Angewandte Chemie - International Edition, 2003, 42, 2982-2985.                                                                                                                                                   | 13.8 | 29        |
| 94  | Polymorphism in a <i>trans</i> -Cinnamic Acid Derivative Exhibiting Two Distinct β-type Phases:<br>Structural Properties, [2 + 2] Photodimerization Reactions, and Polymorphic Phase Transition<br>Behavior. Crystal Growth and Design, 2013, 13, 4110-4117.                                                                                   | 3.0  | 29        |
| 95  | New in situ solid-state NMR techniques for probing the evolution of crystallization processes: pre-nucleation, nucleation and growth. Faraday Discussions, 2015, 179, 115-140.                                                                                                                                                                 | 3.2  | 29        |
| 96  | Exploiting In Situ Solid-State NMR for the Discovery of New Polymorphs during Crystallization Processes. Journal of Physical Chemistry Letters, 2012, 3, 3176-3181.                                                                                                                                                                            | 4.6  | 28        |
| 97  | Solution of an organic crystal structure from X-ray powder diffraction data by a generalized<br>rigid-body Monte Carlo method: crystal structure determination of 1-methylfluorene. Journal of<br>Materials Chemistry, 1996, 6, 1601.                                                                                                          | 6.7  | 26        |
| 98  | Biogenic Guanine Crystals Are Solid Solutions of Guanine and Other Purine Metabolites. Journal of the American Chemical Society, 2022, 144, 5180-5189.                                                                                                                                                                                         | 13.7 | 26        |
| 99  | Crystal engineering of hydrogen-bonded co-crystals between cyanuric acid and â€~diamide' molecules.<br>Investigations on the formation and structure of co-crystals containing cyanuric acid and oxalyl<br>dihydrazide. Journal of Materials Chemistry, 1993, 3, 947-952.                                                                      | 6.7  | 25        |
| 100 | Dynamics of the Hydrogen-Bonding Arrangement in Solid Triphenylmethanol:  An Investigation by<br>Solid-State 2H NMR Spectroscopy. Journal of Physical Chemistry B, 1998, 102, 2165-2175.                                                                                                                                                       | 2.6  | 25        |
| 101 | X-ray birefringence imaging. Science, 2014, 344, 1013-1016.                                                                                                                                                                                                                                                                                    | 12.6 | 25        |
| 102 | Exploiting in-situ solid-state NMR spectroscopy to probe the early stages of hydration of calcium aluminate cement. Solid State Nuclear Magnetic Resonance, 2019, 99, 1-6.                                                                                                                                                                     | 2.3  | 25        |
| 103 | 37Cl/35Cl isotope effects in13C NMR spectroscopy of chlorohydrocarbons. Magnetic Resonance in Chemistry, 1993, 31, 54-57.                                                                                                                                                                                                                      | 1.9  | 24        |
| 104 | 2H NMR lineshape analysis using automated fitting procedures based on local and quasi-global optimization techniques. Magnetic Resonance in Chemistry, 1998, 36, 855-868.                                                                                                                                                                      | 1.9  | 24        |
| 105 | Structural understanding of a polymorphic system by structure solution and refinement from<br>powder X-ray diffraction data: the α and β phases of the latent pigment DPP-Boc â€. Perkin Transactions II<br>RSC, 2000, , 1513-1519.                                                                                                            | 1.1  | 24        |
| 106 | Fine-Tuning the Crystal Morphology of Tunnel Inclusion Compounds:  A General Strategy. Journal of the American Chemical Society, 2001, 123, 12682-12683.                                                                                                                                                                                       | 13.7 | 24        |
| 107 | Structure Solution from Powder X-Ray Diffraction Data by Genetic Algorithm Techniques, Applied to<br>Organic Materials Generated as Polycrystalline Products from Solid State Processes. Materials and<br>Manufacturing Processes, 2009, 24, 293-302.                                                                                          | 4.7  | 24        |
| 108 | Structural diversity, but no polymorphism, in a homologous family of co-crystals of urea and<br>α,ω-dihydroxyalkanes. New Journal of Chemistry, 2011, 35, 1515.                                                                                                                                                                                | 2.8  | 24        |

| #   | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Bidirectional Transport of Guest Molecules through the Nanoporous Tunnel Structure of a Solid<br>Inclusion Compound. Journal of Physical Chemistry C, 2009, 113, 736-743.                                                                         | 3.1  | 23        |
| 110 | <i>Ab initio</i> random structure searching of organic molecular solids: assessment and validation against experimental data. Physical Chemistry Chemical Physics, 2017, 19, 25949-25960.                                                         | 2.8  | 23        |
| 111 | Directâ€Space Structure Determination of Covalent Organic Frameworks from 3D Electron Diffraction<br>Data. Angewandte Chemie - International Edition, 2020, 59, 22638-22644.                                                                      | 13.8 | 23        |
| 112 | Losing symmetry by design. Nature, 1989, 341, 19-19.                                                                                                                                                                                              | 27.8 | 22        |
| 113 | High-resolution solid-state 13C and 29Si NMR investigations of the dynamic properties of tetrakis(trimethylsilyl)silane. Journal of the Chemical Society Chemical Communications, 1993, , 251.                                                    | 2.0  | 22        |
| 114 | Ab initio structure determination of a peptide $\hat{l}^2$ -turn from powder X-ray diffraction data. Chemical Communications, 2001, , 1460-1461.                                                                                                  | 4.1  | 22        |
| 115 | Effects of Polymorphism on Functional Group Dynamics:Â Solid State2H NMR Studies of the Dynamic<br>Properties of the α and β Phases ofl-Glutamic Acid. Journal of Physical Chemistry A, 2002, 106, 7228-7234.                                     | 2.5  | 22        |
| 116 | Ammonium Cyanate Shows Nâ^'H···N Hydrogen Bonding, Not Nâ^'H···O. Journal of the American Chemical<br>Society, 2003, 125, 14449-14451.                                                                                                            | 13.7 | 22        |
| 117 | Structural and Dynamic Aspects of Hydrogen-Bonded Complexes and Inclusion Compounds Containing<br>α,ω-Dicyanoalkanes and Urea, Investigated by Solid-State 13C and 2H NMR Techniques. Journal of Physical<br>Chemistry B, 2005, 109, 23342-23350. | 2.6  | 22        |
| 118 | Structural Chemistry of a New Chiral Anhydrous Phase of<br>Ru(bipy) <sub>3</sub> (ClO <sub>4</sub> ) <sub>2</sub> Established from Powder X-ray Diffraction<br>Analysis. Crystal Growth and Design, 2011, 11, 3313-3317.                          | 3.0  | 22        |
| 119 | The effect of intermolecular hydrogen bonding on the planarity of amides. Physical Chemistry Chemical Physics, 2012, 14, 11944.                                                                                                                   | 2.8  | 22        |
| 120 | Structural Properties of the Low-Temperature Phase of the Hexadecane/Urea Inclusion Compound,<br>Investigated by Synchrotron X-ray Powder Diffractionâ€. Journal of Physical Chemistry B, 1997, 101,<br>9926-9931.                                | 2.6  | 21        |
| 121 | Substituent effects on aromatic interactions in the solid state. Chemical Communications, 2001, , 1500-1501.                                                                                                                                      | 4.1  | 21        |
| 122 | Kinetics of Molecular Transport in a Nanoporous Crystal Studied by Confocal Raman<br>Microspectrometry:  Single-File Diffusion in a Densely Filled Tunnel. Journal of Physical Chemistry B,<br>2007, 111, 12339-12344.                            | 2.6  | 21        |
| 123 | Probing the Evolution of Adsorption on Nanoporous Solids by In Situ Solid-State NMR Spectroscopy.<br>ChemPhysChem, 2007, 8, 1311-1313.                                                                                                            | 2.1  | 21        |
| 124 | In situ solid-state 1H NMR studies of hydration of the solid acid catalyst ZSM-5 in its ammonium form.<br>Solid State Nuclear Magnetic Resonance, 2009, 35, 93-99.                                                                                | 2.3  | 21        |
| 125 | Assessing the Detection Limit of a Minority Solid-State Form of a Pharmaceutical by 1H<br>Double-Quantum Magic-Angle Spinning Nuclear Magnetic Resonance Spectroscopy. Journal of<br>Pharmaceutical Sciences, 2017, 106, 3372-3377.               | 3.3  | 21        |
| 126 | Insights into the Crystallization and Structural Evolution of Glycine Dihydrate by Inâ€Situ Solid‧tate<br>NMR Spectroscopy. Angewandte Chemie - International Edition, 2018, 57, 6619-6623.                                                       | 13.8 | 21        |

| #   | Article                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Polymorphism of l â€Tryptophan. Angewandte Chemie - International Edition, 2019, 58, 18788-18792.                                                                                                                                                               | 13.8 | 21        |
| 128 | A Strategy for Probing the Evolution of Crystallization Processes by Low-Temperature Solid-State<br>NMR and Dynamic Nuclear Polarization. Journal of Physical Chemistry Letters, 2019, 10, 1505-1510.                                                           | 4.6  | 21        |
| 129 | Monitoring Crystallization Processes in Confined Porous Materials by Dynamic Nuclear Polarization<br>Solid-State Nuclear Magnetic Resonance. Journal of the American Chemical Society, 2021, 143, 6095-6103.                                                    | 13.7 | 21        |
| 130 | Materials chemistry communications. Application of the combined maximum entropy and likelihood method to the ab initio determination of an organic crystal structure from X-ray powder diffraction data. Journal of Materials Chemistry, 1992, 2, 1301.         | 6.7  | 20        |
| 131 | Dynamic Properties of Cyclohexane Guest Molecules Constrained within the Zeolite H-ZSM-5 Host<br>Structure:  A Wide-Line Solid State 2H NMR Investigation. Journal of Physical Chemistry A, 1997, 101,<br>4541-4547.                                            | 2.5  | 20        |
| 132 | Unravelling the Disordered Hydrogen Bonding Arrangement in Solid Triphenylmethanol. Journal of<br>Physical Chemistry B, 1999, 103, 6215-6223.                                                                                                                   | 2.6  | 20        |
| 133 | A borazaaromatic analogue of isophthalic acid. Perkin Transactions II RSC, 2001, , 2166-2173.                                                                                                                                                                   | 1.1  | 20        |
| 134 | Triple-Quantum <sup>23</sup> Na MAS NMR Spectroscopy as a Technique for Probing Polymorphism in<br>Sodium Salts. Crystal Growth and Design, 2008, 8, 6-10.                                                                                                      | 3.0  | 20        |
| 135 | Aluminium-catalysed isocyanate trimerization, enhanced by exploiting a dynamic coordination sphere.<br>Chemical Communications, 2019, 55, 7679-7682.                                                                                                            | 4.1  | 20        |
| 136 | Boron–Nitrogenâ€Doped Nanographenes: A Synthetic Tale from Borazine Precursors. Chemistry - A<br>European Journal, 2020, 26, 6608-6621.                                                                                                                         | 3.3  | 20        |
| 137 | Solid-state and solution phase reactivity of 10-hydroxy-10,9-boroxophenanthrene: a model building block for self-assembly processes. New Journal of Chemistry, 2002, 26, 701-710.                                                                               | 2.8  | 19        |
| 138 | The Interplay of Aryl-Perfluoroaryl Stacking Interactions and Interstack Hydrogen Bonding in Controlling the Structure of a Molecular Cocrystal. ChemPhysChem, 2003, 4, 766-769.                                                                                | 2.1  | 19        |
| 139 | A Case Study in Direct-Space Structure Determination from Powder X-ray Diffraction Data:  Finding the<br>Hydrate Structure of an Organic Molecule with Significant Conformational Flexibilityâ€. Crystal<br>Growth and Design, 2005, 5, 2084-2090.              | 3.0  | 19        |
| 140 | Monitoring the evolution of crystallization processes by in-situ solid-state NMR spectroscopy. Solid<br>State Nuclear Magnetic Resonance, 2015, 65, 107-113.                                                                                                    | 2.3  | 19        |
| 141 | Understanding the Solid-State Hydration Behavior of a Common Amino Acid: Identification, Structural Characterization, and Hydration/Dehydration Processes of New Hydrate Phases of <scp>l</scp> -Lysine. Journal of Physical Chemistry C, 2016, 120, 9385-9392. | 3.1  | 19        |
| 142 | Structureâ´'Reactivity Correlations for Solid-State Enantioselective Photochemical Reactions<br>Established Directly from Powder X-ray Diffraction. Journal of the American Chemical Society, 2006,<br>128, 15554-15555.                                        | 13.7 | 18        |
| 143 | Significant Conformational Changes Associated with Molecular Transport in a Crystalline Solid.<br>Journal of Physical Chemistry B, 2006, 110, 10708-10713.                                                                                                      | 2.6  | 18        |
| 144 | Structural properties of urea inclusion compounds containing carboxylic acid anhydride guest<br>molecules: anomalous modes of guest-molecule ordering. Journal of Materials Chemistry, 1993, 3, 1085.                                                           | 6.7  | 17        |

| #   | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Elastic constants of the dioctanoyl peroxide/urea inclusion compound determined by Brillouin scattering. Physical Review B, 1994, 49, 11572-11579.                                                                                                   | 3.2 | 17        |
| 146 | Dynamic properties of the urea molecules in α,ω-dibromoalkane/urea inclusion compounds investigated<br>by2H NMR spectroscopy. Journal of Materials Chemistry, 1994, 4, 35-39.                                                                        | 6.7 | 17        |
| 147 | Electronic and Local Structural Properties of the Bi2Sr2(Ca1-xYx)Cu2O8+l̂´Family of Materials, Studied by X-ray Absorption Spectroscopy. Chemistry of Materials, 2000, 12, 1115-1121.                                                                | 6.7 | 17        |
| 148 | Polymorphs of a 1:1 Cocrystal with Tunnel and Layer Structures:  p,pâ€~-Biphenol/Dimethyl Sulfoxide.<br>Crystal Growth and Design, 2001, 1, 107-111.                                                                                                 | 3.0 | 17        |
| 149 | Powder Diffraction Indexing as a Pattern Recognition Problem:Â A New Approach for Unit Cell<br>Determination Based on an Artificial Neural Network. Journal of Physical Chemistry A, 2004, 108,<br>711-716.                                          | 2.5 | 17        |
| 150 | Applications of Evolutionary Computation in Structure Determination from Diffraction Data.<br>Structure and Bonding, 0, , 55-94.                                                                                                                     | 1.0 | 17        |
| 151 | Design of a Molecular Quasicrystal. ChemPhysChem, 2006, 7, 1649-1653.                                                                                                                                                                                | 2.1 | 17        |
| 152 | A Solid-State Dehydration Process Associated with a Significant Change in the Topology of<br>Dihydrogen Phosphate Chains, Established from Powder X-ray Diffraction. Crystal Growth and<br>Design, 2008, 8, 3641-3645.                               | 3.0 | 17        |
| 153 | Cooperativity in Solid-State Squaramides. Crystal Growth and Design, 2011, 11, 3725-3730.                                                                                                                                                            | 3.0 | 17        |
| 154 | Exploiting <i>in situ</i> NMR to monitor the formation of a metal–organic framework. Chemical Science, 2021, 12, 1486-1494.                                                                                                                          | 7.4 | 17        |
| 155 | Ring inversion of fluorocyclohexane in its solid thiourea inclusion compound. Magnetic Resonance<br>in Chemistry, 1999, 37, 15-24.                                                                                                                   | 1.9 | 16        |
| 156 | Using Polarization Effects to Alter Chemical Reactivity:  A Simple Host Which Enhances Amine<br>Nucleophilicity. Organic Letters, 2000, 2, 1365-1368.                                                                                                | 4.6 | 16        |
| 157 | Significantly Contrasting Solid State Dynamics of the Racemic and Enantiomerically Pure Crystalline<br>Forms of an Amino Acid. Journal of Physical Chemistry B, 2005, 109, 22808-22813.                                                              | 2.6 | 16        |
| 158 | Structure Determination from Powder X-ray Diffraction Data of a New Polymorph of a High-Density<br>Organic Hydrate Material, with an Assessment of Hydrogen-Bond Disorder by Rietveld Refinement.<br>Crystal Growth and Design, 2011, 11, 5192-5199. | 3.0 | 16        |
| 159 | Structural Properties of Carboxylic Acid Dimers Confined within the Urea Tunnel Structure: An MD<br>Simulation Study. Journal of Physical Chemistry B, 2011, 115, 2791-2800.                                                                         | 2.6 | 16        |
| 160 | Structural Rationalization of the Phase Transition Behavior in a Solid Organic Inclusion Compound:<br>Bromocyclohexane/Thiourea. Crystal Growth and Design, 2012, 12, 577-582.                                                                       | 3.0 | 16        |
| 161 | Structural Diversity of Solid Solutions Formed between 3-Chloro- <i>trans</i> -cinnamic acid and<br>3-Bromo- <i>trans</i> -cinnamic Acid. Crystal Growth and Design, 2017, 17, 1276-1284.                                                            | 3.0 | 16        |
| 162 | `NMR Crystallization': <i>in-situ</i> NMR techniques for time-resolved monitoring of crystallization processes. Acta Crystallographica Section C, Structural Chemistry, 2017, 73, 137-148.                                                           | 0.5 | 16        |

| #   | Article                                                                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Properties of the guest molecules in the 1,10-dibromodecane/urea inclusion compound a molecular dynamics simulation study. Journal of Materials Chemistry, 1994, 4, 1731.                                                                                                                                              | 6.7 | 15        |
| 164 | Dynamics of benzene and pyridine guest molecules in their tri-ortho-thymotide inclusion compounds.<br>Solid-state 2H NMR Studies. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 2017.                                                                                                               | 1.7 | 15        |
| 165 | Probing the conformational properties of guest molecules in solid inclusion compounds via EXAFS spectroscopy: bromine K-edge EXAFS studies of the bromocyclohexane/thiourea and trans-1-bromo-2-chlorocyclohexane/thiourea inclusion compounds. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 1497. | 1.7 | 15        |
| 166 | Temperature-dependent structural properties of the chlorocyclohexane/thiourea inclusion compound investigated by synchrotron X-ray powder diffraction. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 273.                                                                                           | 1.7 | 15        |
| 167 | Computational investigation of host–guest chiral recognition in incommensurate<br>2-bromoalkane/urea inclusion compounds. Journal of the Chemical Society, Faraday Transactions,<br>1998, 94, 1633-1639.                                                                                                               | 1.7 | 15        |
| 168 | Acid-Catalyzed Trimerization of Acetaldehyde:  A Highly Selective and Reversible Transformation at<br>Ambient Temperature in a Zeolitic Solid. Journal of Physical Chemistry B, 2002, 106, 1322-1326.                                                                                                                  | 2.6 | 15        |
| 169 | A Solid-State Dehydration Process in an Organic Material Associated with Substantial Hydrogen-Bond<br>Reorganization, Investigated by Powder X-ray Diffraction. Crystal Growth and Design, 2010, 10,<br>3176-3181.                                                                                                     | 3.0 | 15        |
| 170 | X-ray Birefringence from a Model Anisotropic Crystal. Journal of Physical Chemistry Letters, 2011, 2, 2346-2351.                                                                                                                                                                                                       | 4.6 | 15        |
| 171 | New Insights into the Preparation of the Low-Melting Polymorph of Racemic Ibuprofen. Crystal<br>Growth and Design, 2012, 12, 5839-5845.                                                                                                                                                                                | 3.0 | 15        |
| 172 | Exploiting Powder X-ray Diffraction to Establish the Solvent-Assisted Solid-State Supramolecular Assembly of Pillar[5]quinone. Crystal Growth and Design, 2015, 15, 1583-1587.                                                                                                                                         | 3.0 | 15        |
| 173 | A structure determination protocol based on combined analysis of 3D-ED data, powder XRD data, solid-state NMR data and DFT-D calculations reveals the structure of a new polymorph of <scp>l</scp> -tyrosine. Chemical Science, 2022, 13, 5277-5288.                                                                   | 7.4 | 15        |
| 174 | Cs2Bi10Ca6Cl12O16: A New Type of Catalyst for Selective Oxidation Derived from Bismuth Oxychloride.<br>Angewandte Chemie International Edition in English, 1988, 27, 1364-1365.                                                                                                                                        | 4.4 | 14        |
| 175 | Faraday communications. Carbon–halogen second-order quadrupolar and indirect spin–spin coupling<br>effects in high-resolution solid-state13C NMR spectra of halobenzenes. Journal of the Chemical<br>Society, Faraday Transactions, 1994, 90, 3729-3730.                                                               | 1.7 | 14        |
| 176 | New Approaches for Solving Crystal Structures from Powder Diffraction Data. Journal of the Chinese Chemical Society, 1999, 46, 23-34.                                                                                                                                                                                  | 1.4 | 14        |
| 177 | Co-crystalline hydrogen bonded solids based on the alcohol–carboxylic acid–alcohol<br>supramolecular motif. CrystEngComm, 2004, 6, 5-10.                                                                                                                                                                               | 2.6 | 14        |
| 178 | Hydrogen-bonded chains of α,ï‰-diaminoalkane and α,ï‰-dihydroxyalkane guest molecules lead to disrupted<br>tunnel structures in urea inclusion compounds. New Journal of Chemistry, 2005, 29, 1266.                                                                                                                    | 2.8 | 14        |
| 179 | Advantages of a Redefinition of Variable-Space in Direct-Space Structure Solution from Powder X-Ray<br>Diffraction Data. ChemPhysChem, 2007, 8, 650-653.                                                                                                                                                               | 2.1 | 14        |
| 180 | Rationalization of the X-ray photoelectron spectroscopy of aluminium phosphates synthesized from different precursors. RSC Advances, 2020, 10, 8444-8452.                                                                                                                                                              | 3.6 | 14        |

| #   | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | EXAFS spectroscopic studies of the bromine environment in the crystalline inclusion compounds<br>formed between urea and α,ï‰-dibromoalkanes. Journal of the Chemical Society, Faraday Transactions,<br>1993, 89, 3099-3104. | 1.7  | 13        |
| 182 | Second-order quadrupolar effects for directly bonded and remote13C–79/81Br spin pairs in<br>high-resolution13C NMR spectra of solids. Journal of the Chemical Society, Faraday Transactions, 1995,<br>91, 3167-3176.         | 1.7  | 13        |
| 183 | A theoretical framework for the experimental determination of host–guest interaction energies in solid inclusion compounds. Journal of Chemical Physics, 1999, 111, 9784-9790.                                               | 3.0  | 13        |
| 184 | Towards a Fundamental Understanding of Urea and Thiourea inclusion Compounds. Journal of the<br>Chinese Chemical Society, 1999, 46, 5-22.                                                                                    | 1.4  | 13        |
| 185 | A Straightforward and Effective Procedure to Test for Preferred Orientation in Polycrystalline<br>Samples Prior to Structure Determination from Powder Diffraction Data. Crystal Growth and Design,<br>2003, 3, 705-710.     | 3.0  | 13        |
| 186 | Rationalizing the Structural Properties of Bupivacaine Base—A Local Anesthetic—Directly from<br>Powder X-Ray Diffraction Data. Journal of Pharmaceutical Sciences, 2004, 93, 667-674.                                        | 3.3  | 13        |
| 187 | Counteracting stagnation in genetic algorithm calculations by implementation of a micro genetic algorithm strategy. Physical Chemistry Chemical Physics, 2008, 10, 7262.                                                     | 2.8  | 13        |
| 188 | Lessons on the Discovery and Assignment of Polymorphs, Highlighted by the Case of the Latent<br>Pigment DPP-Boc. Crystal Growth and Design, 2009, 9, 853-857.                                                                | 3.0  | 13        |
| 189 | Natural-Abundance Solid-State2H NMR Spectroscopy at High Magnetic Field. Journal of Physical Chemistry A, 2011, 115, 5568-5578.                                                                                              | 2.5  | 13        |
| 190 | A Rare Case of Polymorphism in a Three-Component Co-Crystal System, with Each Polymorph Having<br>Ten Independent Molecules in the Asymmetric Unit. Crystal Growth and Design, 2013, 13, 27-30.                              | 3.0  | 13        |
| 191 | Dynamic properties of p-diiodobenzene investigated by solid-state2H and13C nuclear magnetic resonance spectroscopy. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 3797-3800.                              | 1.7  | 12        |
| 192 | Recent advances in opportunities for solving molecular crystal structures directly from powder diffraction data: new insights in crystal engineering contexts. CrystEngComm, 2002, 4, 356-367.                               | 2.6  | 12        |
| 193 | Prospects for Exploiting 4D Ultrafast Electron Microscopy in Solid-State Organic and Biological Chemistryâ€. Crystal Growth and Design, 2005, 5, 2124-2130.                                                                  | 3.0  | 12        |
| 194 | Structural Properties of Low-Temperature Phase Transitions in the Prototypical Thiourea Inclusion<br>Compound:  Cyclohexane/Thiourea. Journal of Physical Chemistry C, 2008, 112, 839-847.                                   | 3.1  | 12        |
| 195 | X-ray Birefringence: A New Strategy for Determining Molecular Orientation in Materials. Journal of Physical Chemistry Letters, 2012, 3, 3216-3222.                                                                           | 4.6  | 12        |
| 196 | Controlling Spatial Distributions of Molecules in Multicomponent Organic Crystals, with<br>Quantitative Mapping by Confocal Raman Microspectrometry. Journal of the American Chemical<br>Society, 2013, 135, 14512-14515.    | 13.7 | 12        |
| 197 | Structure and Morphology of Light-Reflecting Synthetic and Biogenic Polymorphs of Isoxanthopterin:<br>A Comparison. Chemistry of Materials, 2019, 31, 4479-4489.                                                             | 6.7  | 12        |
| 198 | In Situ Monitoring of Solid-State Polymerization Reactions in Sodium Chloroacetate and Sodium<br>Bromoacetate by 23Na and 13C Solid-State NMR Spectroscopy. Chemistry - A European Journal, 2000, 6,<br>1120-1126.           | 3.3  | 12        |

| #   | Article                                                                                                                                                                                                                                                                                                                                | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | Probing chemical transformations in organic solids via NMR techniques: The solid-state photodimerization reaction of 7-methoxy-4-methylcoumarin. Structural Chemistry, 1994, 5, 327-333.                                                                                                                                               | 2.0  | 11        |
| 200 | Characterization of gauche end-groups in α,ω-dibromoalkanes: vibrational properties of the<br>1,6-dibromohexane/urea inclusion compound. Journal of the Chemical Society, Faraday Transactions,<br>1996, 92, 267-272.                                                                                                                  | 1.7  | 11        |
| 201 | A New Type of Layered Structure for Urea Inclusion Compounds Containing Local Segments of Tunnels. Journal of the American Chemical Society, 2001, 123, 12684-12685.                                                                                                                                                                   | 13.7 | 11        |
| 202 | Elucidating the Crystal Structure of dl-Arginine by Combined Powder X-ray Diffraction Data Analysis and Periodic DFT-D Calculations. Crystal Growth and Design, 2018, 18, 42-46.                                                                                                                                                       | 3.0  | 11        |
| 203 | Establishing the Transitory Existence of Amorphous Phases in Crystallization Pathways by the CLASSIC NMR Technique. ChemPhysChem, 2018, 19, 3341-3345.                                                                                                                                                                                 | 2.1  | 11        |
| 204 | Anderssonâ€Magnéli Phases Ti <sub>n</sub> O <sub>2nâ€1</sub> : Recent Progress Inspired by Swedish<br>Scientists. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 126-133.                                                                                                                                              | 1.2  | 11        |
| 205 | Conformational properties of monosubstituted cyclohexane guest molecules constrained within zeolitic host materials. A solid-state NMR investigation. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 1323.                                                                                                           | 1.7  | 10        |
| 206 | A Strategy for Retrospectively Mapping the Growth History of a Crystal. Angewandte Chemie -<br>International Edition, 2010, 49, 5096-5100.                                                                                                                                                                                             | 13.8 | 10        |
| 207 | Characterization of Intermolecular Interactions in a Disordered Solid via a One-Dimensional<br>Patterson Synthesis. Journal of Physical Chemistry B, 2002, 106, 4032-4035.                                                                                                                                                             | 2.6  | 9         |
| 208 | Structural Rationalization of a Highly Selective Ammonium Ionophore. Crystal Growth and Design, 2002, 2, 309-311.                                                                                                                                                                                                                      | 3.0  | 9         |
| 209 | Structural Characterization of Industrially Relevant Polymorphic Materials from Powder Diffraction Data. Organic Process Research and Development, 2003, 7, 970-976.                                                                                                                                                                   | 2.7  | 9         |
| 210 | Alternative hydrogen bonding modes employed by a helical tubuland diol host molecule.<br>CrystEngComm, 2006, 8, 250.                                                                                                                                                                                                                   | 2.6  | 9         |
| 211 | Polymorphism in a Multicomponent Crystal System of Trimesic Acid and <i>t</i> -Butylamine. Crystal<br>Growth and Design, 2020, 20, 5736-5744.                                                                                                                                                                                          | 3.0  | 9         |
| 212 | Experimental Determination of Interaction Energies in a Porous Molecular Solid. Journal of the American Chemical Society, 2001, 123, 12913-12914.                                                                                                                                                                                      | 13.7 | 8         |
| 213 | Porous poly(D,L-lactide) and poly(D,L-lactide-co-glycolide) produced by thermal salt elimination from halogenocarboxylatesElectronic supplementary information (ESI) available: detailed results of the combustion calorimetric experiments. See http://www.rsc.org/suppdata/dt/b1/b104979h/. Dalton Transactions RSC. 2001 3140-3148. | 2.3  | 8         |
| 214 | Structural Aspects of a Dendrimer Precursor Determined Directly from Powder X-ray Diffraction Data. Crystal Growth and Design, 2004, 4, 451-455.                                                                                                                                                                                       | 3.0  | 8         |
| 215 | In-situ Monitoring of Alkane-Alkane Guest Exchange in Urea Inclusion Compounds using Confocal<br>Raman Microspectrometry. Molecular Crystals and Liquid Crystals, 2006, 456, 139-147.                                                                                                                                                  | 0.9  | 8         |
| 216 | Enhanced Efficiency of Direct-Space Structure Solution from Powder X-ray Diffraction Data in the<br>Case of Conformationally Flexible Molecules. Journal of Physical Chemistry B, 2007, 111, 6349-6356.                                                                                                                                | 2.6  | 8         |

| #   | Article                                                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Structure Determination of Multicomponent Crystalline Phases of (S)-Ibuprofen and I-Proline from<br>Powder X-ray Diffraction Data, Augmented by Complementary Experimental and Computational<br>Techniques. Crystal Growth and Design, 2021, 21, 2498-2507.                                                  | 3.0 | 8         |
| 218 | Solid-State Structural Properties of Alloxazine Determined from Powder XRD Data in Conjunction<br>with DFT-D Calculations and Solid-State NMR Spectroscopy: Unraveling the Tautomeric Identity and<br>Pathways for Tautomeric Interconversion. Crystal Growth and Design, 2022, 22, 524-534.                 | 3.0 | 8         |
| 219 | Conformational Properties of Guest Molecules in Constrained Solid-State Environments:  Bromine<br>K-Edge X-ray Absorption Spectroscopy of 2-Bromoalkane/Urea Inclusion Compounds. Chemistry of<br>Materials, 1998, 10, 1220-1226.                                                                            | 6.7 | 7         |
| 220 | Dynamic Properties of the Guest Molecules in the Pyrazine/α-Zirconium Phosphate Intercalation<br>Compound:À a Multinuclear Solid-State NMR Study. Chemistry of Materials, 2002, 14, 2656-2663.                                                                                                               | 6.7 | 7         |
| 221 | Residue-Based Charge Flipping: A New Variant of an Emerging Algorithm for Structure Solution from<br>X-ray Diffraction Data. Journal of Physical Chemistry A, 2008, 112, 4863-4868.                                                                                                                          | 2.5 | 7         |
| 222 | Dynamic Properties of Solid Ammonium Cyanate. Journal of Physical Chemistry C, 2008, 112, 15870-15879.                                                                                                                                                                                                       | 3.1 | 7         |
| 223 | Arrays of Pâ•O Dipoles As a Recurrent Structural Motif in Bis-Diphenylphosphine Oxides, Established from Powder X-ray Diffraction. Crystal Growth and Design, 2010, 10, 3814-3818.                                                                                                                           | 3.0 | 7         |
| 224 | An ENDOR and DFT analysis of hindered methyl group rotations in frozen solutions of bis(acetylacetonato)-copper(ii). Physical Chemistry Chemical Physics, 2013, 15, 15214.                                                                                                                                   | 2.8 | 7         |
| 225 | Structural and dynamic properties of the C60/n-pentane inclusion compound: solid-state 13C nuclear magnetic resonance investigations. Journal of Materials Chemistry, 1993, 3, 1091.                                                                                                                         | 6.7 | 6         |
| 226 | Comment on "A deuteron NMR study of the tetrahydrofuran clathrate hydrate. Part II: Coupling of<br>rotational and translational dynamics of water―by T. M. Kirschgen, M. D. Zeidler, B. Geil and F. Fujara,<br>Phys. Chem. Chem. Phys., 2003,5, 5247. Physical Chemistry Chemical Physics, 2004, 6, 871-872. | 2.8 | 6         |
| 227 | Mechanistic Aspects of the Solid-State Transformation of Ammonium Cyanate to Urea at High<br>Pressure. Journal of Physical Chemistry B, 2007, 111, 3960-3968.                                                                                                                                                | 2.6 | 6         |
| 228 | Optimizing the Number of Components in a Molecular Quasicrystal: A Three-Component Material<br>Based on the Penrose Tiling. Journal of Physical Chemistry C, 2008, 112, 16186-16188.                                                                                                                         | 3.1 | 6         |
| 229 | X-ray Birefringence Imaging of Materials with Anisotropic Molecular Dynamics. Journal of Physical<br>Chemistry Letters, 2015, 6, 561-567.                                                                                                                                                                    | 4.6 | 6         |
| 230 | The true structural periodicities and superspace group descriptions of the prototypical<br>incommensurate composite materials: Alkane/urea inclusion compounds. Europhysics Letters, 2016, 116,<br>56001.                                                                                                    | 2.0 | 6         |
| 231 | A phenomenological model for structural phase transitions in incommensurate alkane/urea inclusion compounds. Royal Society Open Science, 2018, 5, 180058.                                                                                                                                                    | 2.4 | 6         |
| 232 | Raman Spectroscopic Studies of Urea Inclusion Compounds Containing α,ω-Dibromoalkane Guests.<br>Molecular Crystals and Liquid Crystals, 1992, 211, 157-166.                                                                                                                                                  | 0.3 | 5         |
| 233 | (13C,2H) residual dipolar and indirect spin–spin coupling effects in high-resolution13C nuclear<br>magnetic resonance spectra of solids. Journal of the Chemical Society, Faraday Transactions, 1993, 89,<br>3791-3796.                                                                                      | 1.7 | 5         |
| 234 | Non-ideality and Ion Association in Aqueous Electrolyte Solutions: Overview and a Simple<br>Experimental Approach. Journal of Chemical Education, 1998, 75, 352.                                                                                                                                             | 2.3 | 5         |

| #   | Article                                                                                                                                                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 235 | Recent Advances in the Opportunities for Solving Molecular Crystal Structures Directly from Powder Diffraction Data. Molecular Crystals and Liquid Crystals, 2002, 389, 123-129.                                                                                                                                                                                                        | 0.9  | 5         |
| 236 | Hydrogen Bond Dynamics in Solid Triphenylsilanol. Journal of Physical Chemistry B, 2002, 106, 9013-9018.                                                                                                                                                                                                                                                                                | 2.6  | 5         |
| 237 | Polymorphism of a Novel Sodium Ion Channel Blocker. Journal of Pharmaceutical Sciences, 2003, 92, 2017-2026.                                                                                                                                                                                                                                                                            | 3.3  | 5         |
| 238 | Ammonium cyanate: a DFT study of crystal structure, rotational barriers and vibrational spectrum.<br>Molecular Physics, 2004, 102, 869-876.                                                                                                                                                                                                                                             | 1.7  | 5         |
| 239 | Characterization of a Polymorphic System Exhibiting Substantial Variation of Solubility in a Fluorinated Solvent. Journal of Physical Chemistry C, 2008, 112, 14570-14578.                                                                                                                                                                                                              | 3.1  | 5         |
| 240 | Preferential Clustering of Water Molecules During Hydration of the Ammonium Form of the Solid<br>Acid Catalyst ZSM-5. Catalysis Letters, 2009, 131, 16-20.                                                                                                                                                                                                                              | 2.6  | 5         |
| 241 | Pathways for hydrogen bond switching in a tetrameric methanol cluster. Physical Chemistry Chemical Physics, 2009, 11, 11340.                                                                                                                                                                                                                                                            | 2.8  | 5         |
| 242 | New in situ solid-state NMR strategies for exploring materials formation and adsorption processes: prospects in heterogenous catalysis. Applied Petrochemical Research, 2016, 6, 295-306.                                                                                                                                                                                               | 1.3  | 5         |
| 243 | Calculation of solid-state NMR lineshapes using contour analysis. Solid State Nuclear Magnetic Resonance, 2016, 80, 7-13.                                                                                                                                                                                                                                                               | 2.3  | 5         |
| 244 | Insights into the Crystallization and Structural Evolution of Glycine Dihydrate by Inâ€Situ Solidâ€ <del>S</del> tate<br>NMR Spectroscopy. Angewandte Chemie, 2018, 130, 6729-6733.                                                                                                                                                                                                     | 2.0  | 5         |
| 245 | Polymorphism of l â€Tryptophan. Angewandte Chemie, 2019, 131, 18964-18968.                                                                                                                                                                                                                                                                                                              | 2.0  | 5         |
| 246 | Structural Rationalization Directly from Powder Diffraction Data:  Intermolecular Aggregation in<br>2-(Methylsulfonyl)ethyl Succinimidyl Carbonate. Crystal Growth and Design, 2001, 1, 425-428.                                                                                                                                                                                        | 3.0  | 4         |
| 247 | Crystallization and preliminary X-ray diffraction data ofMycobacterium tuberculosisFbpC1 (Rv3803c).<br>Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 2303-2305.                                                                                                                                                                                               | 2.5  | 4         |
| 248 | Structure Determination of an Oligopeptide Directly from Powder Diffraction Data This work was<br>supported by the EPSRC, the University of Birmingham, Wyeth-Ayerst plc, and Ciba Specialty Chemicals.<br>We are grateful to Professor P. Balaram (Indian Institute of Science, Bangalore) for valuable<br>discussions Angewandte Chemie - International Edition, 2000, 39, 4488-4491. | 13.8 | 4         |
| 249 | Application of EXAFS spectroscopy to probe structural properties of solid inclusion compounds containing halogenoalkane guest molecules within the catena-[(1,2-diaminopropane)cadmium(II) tetra-µ-cyanonickelate(II)] host structure. Journal of the Chemical Society, Faraday Transactions, 1996, 92. 1043-1050.                                                                      | 1.7  | 3         |
| 250 | Structural properties of methoxy derivatives of benzyl bromide, determined from powder X-ray diffraction data. Powder Diffraction, 2005, 20, 345-352.                                                                                                                                                                                                                                   | 0.2  | 3         |
| 251 | A drifting Markov process on the circle, with physical applications. Proceedings of the Royal Society<br>A: Mathematical, Physical and Engineering Sciences, 2013, 469, 20130092.                                                                                                                                                                                                       | 2.1  | 3         |
| 252 | Theoretical analysis of the background intensity distribution in X-ray Birefringence Imaging using synchrotron bending-magnet radiation. Journal of Applied Physics, 2015, 117, 164902.                                                                                                                                                                                                 | 2.5  | 3         |

| #   | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 253 | Determining Molecular Orientations in Disordered Materials from X-ray Linear Dichroism at the<br>Iodine L <sub>1</sub> -Edge. Journal of the American Chemical Society, 2016, 138, 16188-16191.                         | 13.7 | 3         |
| 254 | Complexes of Thiourea with Alkali Metal Bromides and Iodides: Structural Properties, Mixed-Halide<br>and Mixed-Metal Materials, and Halide Exchange Processes. Crystal Growth and Design, 2017, 17,<br>786-793.         | 3.0  | 3         |
| 255 | Polymorphic phase transformations of 3-chloro- <i>trans</i> -cinnamic acid and its solid solution with 3-bromo- <i>trans</i> -cinnamic acid. Acta Crystallographica Section C, Structural Chemistry, 2018, 74, 923-928. | 0.5  | 3         |
| 256 | Probing the Properties of Urea Inclusion Compounds. Molecular Crystals and Liquid Crystals<br>Incorporating Nonlinear Optics, 1990, 186, 177-184.                                                                       | 0.3  | 2         |
| 257 | Predicting X-ray diffraction intensity distributions for one-dimensional inclusion compounds via<br>local density functional calculations. Journal of the Chemical Society, Faraday Transactions, 1993, 89,<br>2017.    | 1.7  | 2         |
| 258 | Explorations in the Dynamics of Crystalline Solids and the Evolution of Crystal Formation Processes.<br>Israel Journal of Chemistry, 2017, 57, 154-170.                                                                 | 2.3  | 2         |
| 259 | Reply to comment on Couzi et al . (2018): a phenomenological model for structural phase transitions<br>in incommensurate alkane/urea inclusion compounds. Royal Society Open Science, 2019, 6, 190518.                  | 2.4  | 2         |
| 260 | Spatially resolved mapping of phase transitions in liquid-crystalline materials by X-ray birefringence imaging. Chemical Science, 2019, 10, 3005-3011.                                                                  | 7.4  | 2         |
| 261 | Temperature-Dependent Structural Properties, Phase Transition Behavior, and Dynamic Properties of a<br>Benzene Derivative in the Solid State. Crystal Growth and Design, 2019, 19, 2155-2162.                           | 3.0  | 2         |
| 262 | Direct‧pace Structure Determination of Covalent Organic Frameworks from 3D Electron Diffraction<br>Data. Angewandte Chemie, 2020, 132, 22827-22833.                                                                     | 2.0  | 2         |
| 263 | Orbital Mapping of Semiconducting Perylenes on Cu(111). Journal of Physical Chemistry C, 2021, 125, 24477-24486.                                                                                                        | 3.1  | 2         |
| 264 | A Computational Investigation of the Dynamics of Urea Molecules in Solids. Molecular Simulation, 1996, 18, 303-323.                                                                                                     | 2.0  | 1         |
| 265 | Probing Host-Guest Interaction Energies in Solid Inclusion Compounds from Experimental Studies of Competitive Inclusion. Molecular Crystals and Liquid Crystals, 2001, 356, 517-525.                                    | 0.3  | 1         |
| 266 | Solving Crystal Structures from Powder Diffraction Data using Genetic Algorithms. Molecular<br>Crystals and Liquid Crystals, 2001, 356, 469-481.                                                                        | 0.3  | 1         |
| 267 | Neue Möglichkeiten der Strukturermittlung aus Pulverbeugungsdaten – Bestimmung der<br>Kristallstruktur eines molekularen Systems mit zwölf variablen Torsionswinkeln. Angewandte<br>Chemie, 1999, 111, 860-864.         | 2.0  | 1         |
| 268 | Circumventing a challenging aspect of crystal structure determination from powder diffraction<br>data. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2022,<br>78, 96-99.     | 1.1  | 1         |
| 269 | Surface Structural Properties of Crystalline <i>s</i> -Triazine: A Computational Investigation.<br>Molecular Simulation, 1995, 15, 65-78.                                                                               | 2.0  | 0         |
| 270 | Structure Determination of Molecular Crystals Directly from Powder Diffraction Data. Nihon Kessho<br>Gakkaishi, 2000, 42, 29-29.                                                                                        | 0.0  | 0         |

| #   | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 271 | Novel technique for spatially resolved imaging of molecular bond orientations using x-ray birefringence. AIP Conference Proceedings, 2016, , .                                                                                             | 0.4  | 0         |
| 272 | Design of a bilayer structure in an organic inclusion compound. Angewandte Chemie - International<br>Edition, 2002, 41, 2181-4.                                                                                                            | 13.8 | 0         |
| 273 | Polymorphism in p-Hydroxybenzoic Acid: The Effect of Intermolecular Hydrogen Bonding in<br>Controlling Proton Order versus Disorder in the Carboxylic Acid Dimer Motif. Angewandte Chemie -<br>International Edition, 2000, 39, 4485-4488. | 13.8 | 0         |