Blake B Rasmussen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1367252/publications.pdf

Version: 2024-02-01

20759 17055 17,293 147 60 122 citations h-index g-index papers 152 152 152 21710 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	Dietary protein recommendations and the prevention of sarcopenia. Current Opinion in Clinical Nutrition and Metabolic Care, 2009, 12, 86-90.	1.3	664
3	An oral essential amino acid-carbohydrate supplement enhances muscle protein anabolism after resistance exercise. Journal of Applied Physiology, 2000, 88, 386-392.	1.2	445
4	Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle. Journal of Physiology, 2006, 576, 613-624.	1.3	438
5	Timing of amino acid-carbohydrate ingestion alters anabolic response of muscle to resistance exercise. American Journal of Physiology - Endocrinology and Metabolism, 2001, 281, E197-E206.	1.8	411
6	The Response of Muscle Protein Anabolism to Combined Hyperaminoacidemia and Glucose-Induced Hyperinsulinemia Is Impaired in the Elderly $<$ sup $<$ 1 $<$ /sup $>$ 1. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 4481-4490.	1.8	383
7	Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. Journal of Applied Physiology, 2007, 103, 903-910.	1.2	367
8	Leucine-enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E392-E400.	1.8	360
9	Rapamycin administration in humans blocks the contractionâ€induced increase in skeletal muscle protein synthesis. Journal of Physiology, 2009, 587, 1535-1546.	1.3	354
10	The Response of Muscle Protein Anabolism to Combined Hyperaminoacidemia and Glucose-Induced Hyperinsulinemia Is Impaired in the Elderly. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 4481-4490.	1.8	338
11	Skeletal muscle protein anabolic response to resistance exercise and essential amino acids is delayed with aging. Journal of Applied Physiology, 2008, 104, 1452-1461.	1.2	326
12	Insulin resistance of muscle protein metabolism in aging. FASEB Journal, 2006, 20, 768-769.	0.2	312
13	Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men. Journal of Applied Physiology, 2010, 108, 1199-1209.	1.2	288
14	Aging impairs contraction-induced human skeletal muscle mTORC1 signaling and protein synthesis. Skeletal Muscle, 2011, 1, 11.	1.9	288
15	Nutrient signalling in the regulation of human muscle protein synthesis. Journal of Physiology, 2007, 582, 813-823.	1.3	272
16	Nutritional and contractile regulation of human skeletal muscle protein synthesis and mTORC1 signaling. Journal of Applied Physiology, 2009, 106, 1374-1384.	1.2	261
17	Mammalian Target of Rapamycin Complex 1 Activation Is Required for the Stimulation of Human Skeletal Muscle Protein Synthesis by Essential Amino Acids1–3. Journal of Nutrition, 2011, 141, 856-862.	1.3	225
18	Leucine-enriched nutrients and the regulation of mammalian target of rapamycin signalling and human skeletal muscle protein synthesis. Current Opinion in Clinical Nutrition and Metabolic Care, 2008, 11, 222-226.	1.3	219

#	Article	IF	Citations
19	Aging differentially affects human skeletal muscle microRNA expression at rest and after an anabolic stimulus of resistance exercise and essential amino acids. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E1333-E1340.	1.8	208
20	Aging and microRNA expression in human skeletal muscle: a microarray and bioinformatics analysis. Physiological Genomics, 2011, 43, 595-603.	1.0	206
21	Effect of insulin on human skeletal muscle protein synthesis is modulated by insulin-induced changes in muscle blood flow and amino acid availability. American Journal of Physiology - Endocrinology and Metabolism, 2006, 291, E745-E754.	1.8	199
22	An increase in essential amino acid availability upregulates amino acid transporter expression in human skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2010, 298, E1011-E1018.	1.8	186
23	Resistance Exercise Training Alters Mitochondrial Function in Human Skeletal Muscle. Medicine and Science in Sports and Exercise, 2015, 47, 1922-1931.	0.2	181
24	Bed rest impairs skeletal muscle amino acid transporter expression, mTORC1 signaling, and protein synthesis in response to essential amino acids in older adults. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E1113-E1122.	1.8	180
25	Aerobic Exercise Overcomes the Age-Related Insulin Resistance of Muscle Protein Metabolism by Improving Endothelial Function and Akt/Mammalian Target of Rapamycin Signaling. Diabetes, 2007, 56, 1615-1622.	0.3	178
26	Excess Leucine Intake Enhances Muscle Anabolic Signaling but Not Net Protein Anabolism in Young Men and Women. Journal of Nutrition, 2010, 140, 1970-1976.	1.3	158
27	Malonyl coenzyme A and the regulation of functional carnitine palmitoyltransferase-1 activity and fat oxidation in human skeletal muscle. Journal of Clinical Investigation, 2002, 110, 1687-1693.	3.9	154
28	Human Muscle Gene Expression following Resistance Exercise and Blood Flow Restriction. Medicine and Science in Sports and Exercise, 2008, 40, 691-698.	0.2	143
29	Insulin Stimulates Human Skeletal Muscle Protein Synthesis via an Indirect Mechanism Involving Endothelial-Dependent Vasodilation and Mammalian Target of Rapamycin Complex 1 Signaling. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 3848-3857.	1.8	143
30	Muscle protein breakdown has a minor role in the protein anabolic response to essential amino acid and carbohydrate intake following resistance exercise. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 299, R533-R540.	0.9	140
31	Skeletal Muscle Autophagy and Protein Breakdown Following Resistance Exercise are Similar in Younger and Older Adults. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2013, 68, 599-607.	1.7	138
32	Protein Blend Ingestion Following Resistance Exercise Promotes Human Muscle Protein Synthesis. Journal of Nutrition, 2013, 143, 410-416.	1.3	136
33	Supraphysiological hyperinsulinaemia is necessary to stimulate skeletal muscle protein anabolism in older adults: evidence of a true age-related insulin resistance of muscle protein metabolism. Diabetologia, 2009, 52, 1889-1898.	2.9	133
34	Pharmacological Vasodilation Improves Insulin-Stimulated Muscle Protein Anabolism but Not Glucose Utilization in Older Adults. Diabetes, 2010, 59, 2764-2771.	0.3	120
35	A moderate acute increase in physical activity enhances nutritive flow and the muscle protein anabolic response to mixed nutrient intake in older adults. American Journal of Clinical Nutrition, 2012, 95, 1403-1412.	2.2	117
36	Effect of age on basal muscle protein synthesis and mTORC1 signaling in a large cohort of young and older men and women. Experimental Gerontology, 2015, 65, 1-7.	1.2	116

#	Article	IF	Citations
37	Resistance exercise increases leg muscle protein synthesis and mTOR signalling independent of sex. Acta Physiologica, 2010, 199, 71-81.	1.8	111
38	Exercise, Amino Acids, and Aging in the Control of Human Muscle Protein Synthesis. Medicine and Science in Sports and Exercise, 2011, 43, 2249-2258.	0.2	111
39	REGULATION OF FATTY ACID OXIDATION IN SKELETAL MUSCLE. Annual Review of Nutrition, 1999, 19, 463-484.	4.3	109
40	Exercise and Nutrition to Target Protein Synthesis Impairments in Aging Skeletal Muscle. Exercise and Sport Sciences Reviews, 2013, 41, 216-223.	1.6	107
41	Mitochondrial respiratory capacity and coupling control decline with age in human skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E224-E232.	1.8	107
42	Essential Amino Acids Increase MicroRNA-499, â^208b, and â^23a and Downregulate Myostatin and Myocyte Enhancer Factor 2C mRNA Expression in Human Skeletal Muscle. Journal of Nutrition, 2009, 139, 2279-2284.	1.3	105
43	Essential amino acid and carbohydrate ingestion before resistance exercise does not enhance postexercise muscle protein synthesis. Journal of Applied Physiology, 2009, 106, 1730-1739.	1.2	101
44	Defining meal requirements for protein to optimize metabolic roles of amino acids. American Journal of Clinical Nutrition, 2015, 101, 1330S-1338S.	2.2	100
45	Role of Ingested Amino Acids and Protein in the Promotion of Resistance Exercise–Induced Muscle Protein Anabolism. Journal of Nutrition, 2016, 146, 155-183.	1.3	97
46	Post-Prandial Protein Handling: You Are What You Just Ate. PLoS ONE, 2015, 10, e0141582.	1.1	96
47	Contractile and Nutritional Regulation of Human Muscle Growth. Exercise and Sport Sciences Reviews, 2003, 31, 127-131.	1.6	95
48	Skeletal muscle amino acid transporter expression is increased in young and older adults following resistance exercise. Journal of Applied Physiology, 2011, 111, 135-142.	1.2	95
49	Activation of mTORC1 signaling and protein synthesis in human muscle following blood flow restriction exercise is inhibited by rapamycin. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E1198-E1204.	1.8	93
50	Human and Mouse Brown Adipose Tissue Mitochondria Have Comparable UCP1 Function. Cell Metabolism, 2016, 24, 246-255.	7.2	93
51	Expression of growth-related genes in young and older human skeletal muscle following an acute stimulation of protein synthesis. Journal of Applied Physiology, 2009, 106, 1403-1411.	1.2	85
52	Reactive hyperemia is not responsible for stimulating muscle protein synthesis following blood flow restriction exercise. Journal of Applied Physiology, 2012, 112, 1520-1528.	1.2	84
53	Short-term bed rest increases TLR4 and IL-6 expression in skeletal muscle of older adults. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 305, R216-R223.	0.9	84
54	Leucine-Enriched Amino Acid Ingestion after Resistance Exercise Prolongs Myofibrillar Protein Synthesis and Amino Acid Transporter Expression in Older Men. Journal of Nutrition, 2014, 144, 1694-1702.	1.3	83

#	Article	IF	Citations
55	Skeletal Muscle Protein Balance and Metabolism in the Elderly. Current Aging Science, 2011, 4, 260-268.	0.4	81
56	Soy-dairy protein blend and whey protein ingestion after resistance exercise increases amino acid transport and transporter expression in human skeletal muscle. Journal of Applied Physiology, 2014, 116, 1353-1364.	1.2	78
57	Malonyl coenzyme A and the regulation of functional carnitine palmitoyltransferase-1 activity and fat oxidation in human skeletal muscle. Journal of Clinical Investigation, 2002, 110, 1687-1693.	3.9	78
58	The Importance of Resistance Exercise Training to Combat Neuromuscular Aging. Physiology, 2019, 34, 112-122.	1.6	73
59	Amino Acid Sensing in Skeletal Muscle. Trends in Endocrinology and Metabolism, 2016, 27, 796-806.	3.1	71
60	Basal muscle intracellular amino acid kinetics in women and men. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E77-E83.	1.8	68
61	Amino acids are necessary for the insulin-induced activation of mTOR/S6K1 signaling and protein synthesis in healthy and insulin resistant human skeletal muscle. Clinical Nutrition, 2008, 27, 447-456.	2.3	64
62	Aging differentially affects human skeletal muscle amino acid transporter expression when essential amino acids are ingested after exercise. Clinical Nutrition, 2013, 32, 273-280.	2.3	60
63	Soy-Dairy Protein Blend or Whey Protein Isolate Ingestion Induces Similar Postexercise Muscle Mechanistic Target of Rapamycin Complex 1 Signaling and Protein Synthesis Responses in Older Men. Journal of Nutrition, 2016, 146, 2468-2475.	1.3	50
64	Androstenedione Does Not Stimulate Muscle Protein Anabolism in Young Healthy Men. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 55-59.	1.8	50
65	Short-term insulin and nutritional energy provision do not stimulate muscle protein synthesis if blood amino acid availability decreases. American Journal of Physiology - Endocrinology and Metabolism, 2005, 289, E999-E1006.	1.8	49
66	Uncoupled skeletal muscle mitochondria contribute to hypermetabolism in severely burned adults. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E462-E467.	1.8	49
67	Muscle Protein Anabolic Resistance to Essential Amino Acids Does Not Occur in Healthy Older Adults Before or After Resistance Exercise Training. Journal of Nutrition, 2018, 148, 900-909.	1.3	49
68	Low skeletal muscle capillarization limits muscle adaptation to resistance exercise training in older adults. Experimental Gerontology, 2019, 127, 110723.	1,2	48
69	Chronic paraplegia-induced muscle atrophy downregulates the mTOR/S6K1 signaling pathway. Journal of Applied Physiology, 2008, 104, 27-33.	1.2	46
70	Post-absorptive muscle protein turnover affects resistance training hypertrophy. European Journal of Applied Physiology, 2017, 117, 853-866.	1.2	45
71	Protein Supplementation Has Minimal Effects on Muscle Adaptations during Resistance Exercise Training in Young Men: A Double-Blind Randomized Clinical Trial. Journal of Nutrition, 2016, 146, 1660-1669.	1.3	44
72	PAX7+ satellite cells in young and older adults following resistance exercise. Muscle and Nerve, 2012, 46, 51-59.	1.0	43

#	Article	IF	Citations
73	Addition of Carbohydrate or Alanine to an Essential Amino Acid Mixture Does Not Enhance Human Skeletal Muscle Protein Anabolism. Journal of Nutrition, 2013, 143, 307-314.	1.3	42
74	Skeletal Muscle Protein Anabolic Response to Increased Energy and Insulin Is Preserved in Poorly Controlled Type 2 Diabetes. Journal of Nutrition, 2006, 136, 1249-1255.	1.3	41
75	Satellite cell activation and apoptosis in skeletal muscle from severely burned children. Journal of Physiology, 2016, 594, 5223-5236.	1.3	41
76	Long-Term Skeletal Muscle Mitochondrial Dysfunction is Associated with Hypermetabolism in Severely Burned Children. Journal of Burn Care and Research, 2016, 37, 53-63.	0.2	39
77	Effect of Aerobic Exercise Training and Essential Amino Acid Supplementation for 24 Weeks on Physical Function, Body Composition, and Muscle Metabolism in Healthy, Independent Older Adults: A Randomized Clinical Trial. Journals of Gerontology - Series A Biological Sciences and Medical Sciences. 2019. 74. 1598-1604.	1.7	38
78	Leg glucose and protein metabolism during an acute bout of resistance exercise in humans. Journal of Applied Physiology, 2004, 97, 1379-1386.	1.2	36
79	Essential amino acid sensing, signaling, and transport in the regulation of human muscle protein metabolism. Current Opinion in Clinical Nutrition and Metabolic Care, 2011, 14, 83-88.	1.3	36
80	Amino acid transporters in the regulation of human skeletal muscle protein metabolism. Current Opinion in Clinical Nutrition and Metabolic Care, 2013, 16, 638-644.	1.3	36
81	Hypermetabolism and hypercatabolism of skeletal muscle accompany mitochondrial stress following severe burn trauma. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E436-E448.	1.8	36
82	Resistance exercise training promotes fiber type-specific myonuclear adaptations in older adults. Journal of Applied Physiology, 2020, 128, 795-804.	1.2	35
83	A chronic increase in physical activity inhibits fed-state mTOR/S6K1 signaling and reduces IRS-1 serine phosphorylation in rat skeletal muscle. Applied Physiology, Nutrition and Metabolism, 2008, 33, 93-101.	0.9	33
84	Resistance exercise increases human skeletal muscle AS160/TBC1D4 phosphorylation in association with enhanced leg glucose uptake during postexercise recovery. Journal of Applied Physiology, 2008, 105, 1967-1974.	1.2	33
85	Deficiency in Repair of the Mitochondrial Genome Sensitizes Proliferating Myoblasts to Oxidative Damage. PLoS ONE, 2013, 8, e75201.	1.1	32
86	Protein Supplementation Does Not Affect Myogenic Adaptations to Resistance Training. Medicine and Science in Sports and Exercise, 2017, 49, 1197-1208.	0.2	31
87	Gene and protein expression associated with protein synthesis and breakdown in paraplegic skeletal muscle. Muscle and Nerve, 2008, 37, 505-513.	1.0	28
88	A soy, whey and caseinate blend extends postprandial skeletal muscle protein synthesis in rats. Clinical Nutrition, 2013, 32, 585-591.	2.3	28
89	Alteration of Hepatic Fatty Acid Metabolism After Burn Injury in Pigs. Journal of Parenteral and Enteral Nutrition, 2001, 25, 310-316.	1.3	27
90	Mitochondrial Bioenergetics in the Metabolic Myopathy Accompanying Peripheral Artery Disease. Frontiers in Physiology, 2017, 8, 141.	1.3	27

#	Article	IF	CITATIONS
91	The impact of postexercise essential amino acid ingestion on the ubiquitin proteasome and autophagosomal-lysosomal systems in skeletal muscle of older men. Journal of Applied Physiology, 2017, 122, 620-630.	1.2	26
92	Insulin increases mRNA abundance of the amino acid transporter SLC7A5/LAT1 via an mTORC1-dependent mechanism in skeletal muscle cells. Physiological Reports, 2014, 2, e00238.	0.7	25
93	Whey Protein Hydrolysate Increases Amino Acid Uptake, mTORC1 Signaling, and Protein Synthesis in Skeletal Muscle of Healthy Young Men in a Randomized Crossover Trial. Journal of Nutrition, 2019, 149, 1149-1158.	1.3	25
94	Measuring Exercise Capacity and Physical Function in Adult and Older Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, 76, 819-824.	1.7	24
95	Skeletal muscle–specific knockout of DEP domain containing 5 protein increases mTORC1 signaling, muscle cell hypertrophy, and mitochondrial respiration. Journal of Biological Chemistry, 2019, 294, 4091-4102.	1.6	22
96	Dysregulation of muscle fatty acid metabolism in type 2 diabetes is independent of malonyl-CoA. Diabetologia, 2006, 49, 2144-2152.	2.9	21
97	Moderateâ€intensity aerobic exercise improves skeletal muscle quality in older adults. Translational Sports Medicine, 2019, 2, 109-119.	0.5	21
98	Essential amino acid ingestion alters expression of genes associated with amino acid sensing, transport, and mTORC1 regulation in human skeletal muscle. Nutrition and Metabolism, 2017, 14, 35.	1.3	20
99	Biology of Activating Transcription Factor 4 (ATF4) and Its Role in Skeletal Muscle Atrophy. Journal of Nutrition, 2022, 152, 926-938.	1.3	20
100	Increasing Insulin Availability Does Not Augment Postprandial Muscle Protein Synthesis Rates in Healthy Young and Older Men. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 3978-3988.	1.8	19
101	Sequential muscle biopsies during a 6-h tracer infusion do not affect human mixed muscle protein synthesis and muscle phenylalanine kinetics. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E959-E963.	1.8	18
102	Repetitive TLR3 activation in the lung induces skeletal muscle adaptations and cachexia. Experimental Gerontology, 2018, 106, 88-100.	1.2	17
103	Rapamycin does not affect post-absorptive protein metabolism in human skeletal muscle. Metabolism: Clinical and Experimental, 2013, 62, 144-151.	1.5	16
104	Postexercise essential amino acid supplementation amplifies skeletal muscle satellite cell proliferation in older men 24Âhours postexercise. Physiological Reports, 2017, 5, e13269.	0.7	14
105	The Relationships Between Testosterone, Body Composition, and Insulin Resistance: A lesson from a case of extreme hyperandrogenism. Diabetes Care, 2005, 28, 429-432.	4.3	13
106	Paraplegia increases skeletal muscle autophagy. Muscle and Nerve, 2012, 46, 793-798.	1.0	13
107	Blunted IL-6 and IL-10 response to maximal aerobic exercise in patients with traumatic brain injury. European Journal of Applied Physiology, 2015, 115, 111-118.	1.2	11
108	The balancing act between the cellular processes of protein synthesis and breakdown: exercise as a model to understand the molecular mechanisms regulating muscle mass. Journal of Applied Physiology, 2009, 106, 1365-1366.	1.2	9

#	Article	IF	CITATIONS
109	Influence of ageing and essential amino acids on quantitative patterns of troponin T alternative splicing in human skeletal muscle. Applied Physiology, Nutrition and Metabolism, 2015, 40, 788-796.	0.9	7
110	ATF4 Is a Fundamental Regulator of Nutrient Sensing and Protein Turnover. Journal of Nutrition, 2020, 150, 979-980.	1.3	7
111	Phosphatidic acid: a novel mechanical mechanism for how resistance exercise activates mTORC1 signalling. Journal of Physiology, 2009, 587, 3415-3416.	1.3	6
112	Effect of essential amino acid supplementation and aerobic exercise on insulin sensitivity in healthy older adults: A randomized clinical trial. Clinical Nutrition, 2020, 39, 1371-1378.	2.3	6
113	Does a reduction in anabolic signaling contribute to muscle wasting in chronic heart failure?. Journal of Applied Physiology, 2011, 110, 869-870.	1.2	4
114	The missing Akt in the mechanical regulation of skeletal muscle mTORC1 signalling and growth. Journal of Physiology, 2011, 589, 1507-1507.	1.3	4
115	Effect of the lysosomotropic agent chloroquine on mTORC1 activation and protein synthesis in human skeletal muscle. Nutrition and Metabolism, 2021, 18, 61.	1.3	4
116	Nutrient signaling in the regulation of human muscle protein synthesis. FASEB Journal, 2007, 21, A713.	0.2	2
117	Fat oxidation and glucose uptake are increased following an acute bout of resistance exercise: Role of AMPK, ACC, Akt/PKB, and AS160. FASEB Journal, 2007, 21, A580.	0.2	1
118	Paraplegia in Rats is Associated with an Inhibition of p70S6 Kinase Activity. FASEB Journal, 2006, 20, A1469.	0.2	1
119	Effect of rapamycin administration in humans on the skeletal muscle protein anabolic response to essential amino acid ingestion. FASEB Journal, 2010, 24, .	0.2	1
120	Effects of dietary soy, whey and caseinate blends versus whey or soy alone on skeletal muscle protein synthesis in rats. FASEB Journal, 2011, 25, 217.6.	0.2	1
121	Rapamycin administration does not impair basal protein metabolism in human skeletal muscle. FASEB Journal, 2012, 26, 1075.3.	0.2	1
122	Type 2 Diabetes Reduces the Muscle Anabolic Effect of Resistance Exercise Training in Older Adults. Innovation in Aging, 2020, 4, 529-529.	0.0	1
123	AICAR., 2012, , 50-50.		0
124	Autophagy. , 2012, , 112-112.		0
125	αB crystalline. , 2012, , 1-1.		0
126	TRANSCRIPTOME ALTERATIONS ASSOCIATED WITH AGE-RELATED DECLINE IN PHYSICAL FUNCTION Innovation in Aging, 2019, 3, S872-S872.	0.0	0

#	Article	IF	CITATIONS
127	EFFECTS OF RESISTANCE EXERCISE TRAINING ON ENDOTHELIAL FUNCTION AND MUSCLE PERFUSION IN OLDER ADULTS WITH DIABETES. Innovation in Aging, 2019, 3, S951-S952.	0.0	0
128	Muscle AMPKα2 activity, acidosis, and protein synthesis in men and women following resistance exercise. FASEB Journal, 2006, 20, A1047.	0.2	0
129	Effect of type 2 diabetes (T2DM) on muscle protein metabolism in older subjects. FASEB Journal, 2006, 20, A556.	0.2	0
130	Racial/ethnic disparities in basal muscle protein metabolism. FASEB Journal, 2007, 21, A837.	0.2	0
131	Prolonged Tracer Infusion and Sequential Muscle Biopsies Do Not Affect Human Muscle Protein and Amino Acid Kinetics. FASEB Journal, 2007, 21, A336.	0.2	0
132	Nutrient signaling in insulin resistant human skeletal muscle during reduced amino acid availability. FASEB Journal, 2007, 21, A714.	0.2	0
133	Phosphorylation of muscle Akt, AS160, and S6K1 are reduced following 8 weeks of increased physical activity in fasting rats. FASEB Journal, 2008, 22, .	0.2	0
134	Higher Leucine Content in an Essential Amino Acid Solution Enhances Human Skeletal Muscle mTOR Signaling. FASEB Journal, 2009, 23, 227.3.	0.2	0
135	Expression of the letâ€7 family of microRNAs is elevated in older human skeletal muscle. FASEB Journal, 2009, 23, 630.3.	0.2	0
136	Isolated pharmacological vasodilation does not stimulate skeletal muscle protein synthesis in healthy older adults FASEB Journal, 2011, 25, 233.7.	0.2	0
137	Chronic Heart Failure is Associated with Elevated Skeletal Muscle Inflammation and Tollâ€Like Receptor 4 Signaling. FASEB Journal, 2012, 26, 835.12.	0.2	0
138	Inhibition of Glycolysis and mTORC1 activation in Human Skeletal Muscle with Blood Flow Restriction Exercise. FASEB Journal, 2012, 26, 1076.3.	0.2	0
139	Shortâ€term bed rest increases inflammation as evidenced by elevated TLR4, NFκB1 and IL6 expression in skeletal muscle of older adults. FASEB Journal, 2012, 26, 715.2.	0.2	0
140	Basal muscle protein synthesis is unaffected by sex in young and older adults. FASEB Journal, 2012, 26, 42.6.	0.2	0
141	Influence of excess postexercise leucine ingestion on mTORC1 signaling and gene expression in skeletal muscle of older men: a 24 hr timeâ€course. FASEB Journal, 2012, 26, 42.8.	0.2	0
142	Acute aerobic exercise increases AdipoR1 and RAGE proteins and decreases HSP60 protein in skeletal muscle of physically inactive older adults. FASEB Journal, 2012, 26, 1142.5.	0.2	0
143	Effect of protein blend vs whey protein ingestion on muscle protein synthesis following resistance exercise. FASEB Journal, 2012, 26, 1013.9.	0.2	0
144	The acute aerobic exerciseâ€induced increase in amino acid transporter expression adapts to exercise training in older adults. FASEB Journal, 2013, 27, 350.3.	0.2	0

#	Article	IF	CITATIONS
145	Excess postexercise leucine ingestion enhances muscle protein synthesis in skeletal muscle of older men. FASEB Journal, 2013, 27, 350.2.	0.2	0
146	Higher sodium and saturated fat intake is associated with lower muscle protein synthesis in elders (820.16). FASEB Journal, 2014, 28, 820.16.	0.2	0
147	The Influence of Excess Postexercise Leucine Ingestion on Markers of Autophagy in Skeletal Muscle of Older Men. FASEB Journal, 2015, 29, LB680.	0.2	0