Denis P Dowling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1366645/publications.pdf

Version: 2024-02-01

193 papers 5,766 citations

38 h-index 65 g-index

196 all docs

196 docs citations

196 times ranked 6933 citing authors

#	Article	IF	CITATIONS
1	Comparison between continuous and modulated wave laser emission modes for the selective laser melting of Ti-6Al-4V: Dimensional accuracy, microstructure and mechanical behaviour. Additive Manufacturing, 2022, 55, 102825.	1.7	3
2	Synergistic toughening and electrical functionalization of an epoxy using ⟨scp⟩MWCNTs⟨ scp⟩ and silaneâ€ plasmaâ€activated basalt fibers. Journal of Applied Polymer Science, 2021, 138, .	1.3	8
3	NiO/ZrO ₂ nanocomposites as photocathodes of tandem DSCs with higher photoconversion efficiency with respect to parent single-photoelectrode p-DSCs. Sustainable Energy and Fuels, 2021, 5, 4736-4748.	2.5	6
4	Adhesion Improvement of Thermoplastics-Based Composites by Atmospheric Plasma and UV Treatments. Applied Composite Materials, 2021, 28, 71-89.	1.3	27
5	Application of the STRAY statistical learning algorithm for the evaluation of in-situ process monitoring data during L-PBF additive manufacturing Procedia Manufacturing, 2021, 54, 250-256.	1.9	2
6	Using in-situ process monitoring data to identify defective layers in Ti-6Al-4V additively manufactured porous biomaterials. Journal of Manufacturing Processes, 2021, 64, 1248-1254.	2.8	14
7	Investigating the fatigue and mechanical behaviour of 3D printed woven and nonwoven continuous carbon fibre reinforced polymer (CFRP) composites. Composites Part B: Engineering, 2021, 212, 108704.	5.9	63
8	In-situ XRD study on the effects of stress relaxation and phase transformation heat treatments on mechanical and microstructural behaviour of additively manufactured Ti-6Al-4V. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 819, 141534.	2.6	21
9	Ti–6Al–4V microstructural functionally graded material by additive manufacturing: Experiment and computational modelling. Materials Science & Dictional Materials: Properties, Microstructure and Processing, 2021, 823, 141782.	2.6	10
10	In-situ sensing, process monitoring and machine control in Laser Powder Bed Fusion: A review. Additive Manufacturing, 2021, 45, 102058.	1.7	73
11	Impact of print bed build location on the dimensional accuracy and surface quality of parts printed by multi jet fusion. Journal of Manufacturing Processes, 2021, 70, 290-299.	2.8	11
12	Concentric annular liquid–liquid phase separation for flow chemistry and continuous processing. Reaction Chemistry and Engineering, 2021, 6, 1635-1643.	1.9	3
13	Development and Implementation of a Digital Manufacturing Demonstrator for Engineering Education. Procedia CIRP, 2021, 104, 1674-1679.	1.0	7
14	Evaluation of the protective performance of hydrophobic coatings applied on carbon-fibre epoxy composites. Journal of Composite Materials, 2020, 54, 1327-1338.	1.2	6
15	Enhancing the mechanical performance of 3Dâ€printed basalt fiberâ€reinforced composites using inâ€line atmospheric plasma pretreatments. Plasma Processes and Polymers, 2020, 17, 1900143.	1.6	8
16	Comparison between the properties of polyamide 12 and glass bead filled polyamide 12 using the multi jet fusion printing process. Additive Manufacturing, 2020, 31, 100961.	1.7	31
17	Effects of laser power on geometry, microstructure and mechanical properties of printed Ti-6Al-4V parts. Journal of Materials Processing Technology, 2020, 278, 116539.	3.1	41
18	3D Printing of Fibre-Reinforced Thermoplastic Composites Using Fused Filament Fabrication—A Review. Polymers, 2020, 12, 2188.	2.0	96

#	Article	IF	CITATIONS
19	The effects of geometry and laser power on the porosity and melt pool formation in additively manufactured 316L stainless steel. International Journal of Advanced Manufacturing Technology, 2020, 111, 1457-1470.	1.5	12
20	Investigation of process by-products during the Selective Laser Melting of Ti6AL4V powder. Additive Manufacturing, 2020, 36, 101514.	1.7	10
21	Failure analysis of 3D printed woven composite plates with holes under tensile and shear loading. Composites Part B: Engineering, 2020, 186, 107835.	5. 9	58
22	Selective laser melting of Ti-6Al-4V: Comparing $\hat{1}$ /4CT with in-situ process monitoring data. CIRP Journal of Manufacturing Science and Technology, 2020, 31, 91-98.	2.3	7
23	3D printing of PEEK reactors for flow chemistry and continuous chemical processing. Reaction Chemistry and Engineering, 2020, 5, 728-735.	1.9	34
24	Mechanism of stress relaxation and phase transformation in additively manufactured Ti-6Al-4V via in situ high temperature XRD and TEM analyses. Acta Materialia, 2020, 188, 720-732.	3.8	122
25	Electrochemically Deposited NiO Films as a Blocking Layer in p-Type Dye-Sensitized Solar Cells with an Impressive 45% Fill Factor. Nanomaterials, 2020, 10, 167.	1.9	26
26	Correlating in-situ process monitoring data with the reduction in load bearing capacity of selective laser melted Ti–6Al–4V porous biomaterials. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 106, 103723.	1.5	9
27	Influence of process parameters on the correlation between in-situ process monitoring data and the mechanical properties of Ti-6Al-4V non-stochastic cellular structures. Additive Manufacturing, 2019, 30, 100890.	1.7	15
28	Lowâ€pressure additive manufacturing of continuous fiberâ€reinforced polymer composites. Polymer Composites, 2019, 40, 4329-4339.	2.3	59
29	Investigation of the performance of a pilot-scale barrel atmospheric plasma system for plasma activation of polymer particles. Nami Jishu Yu Jingmi Gongcheng/Nanotechnology and Precision Engineering, 2019, 2, 1-7.	1.7	5
30	Evaluation of the microstructure, mechanical and tribological properties of nickel-diamond nanocomposite coatings. Diamond and Related Materials, 2019, 94, 118-128.	1.8	14
31	Characterisation of titanium oxide layers using Raman spectroscopy and optical profilometry: Influence of oxide properties. Results in Physics, 2019, 12, 1574-1585.	2.0	85
32	Testing of Hydrophobically Coated Composite Materials With Marine Renewable Energy Applications. Infrastructure Asset Management, 2019, , 1-11.	1.2	1
33	Enhancing the bearing strength of woven carbon fibre thermoplastic composites through additive manufacturing. Composite Structures, 2019, 212, 381-388.	3.1	42
34	Prediction of tool-wear in turning of medical grade cobalt chromium molybdenum alloy (ASTM F75) using non-parametric Bayesian models. Journal of Intelligent Manufacturing, 2019, 30, 1259-1270.	4.4	19
35	Evaluation of the influence of low pressure additive manufacturing processing conditions on printed polymer parts. Additive Manufacturing, 2018, 21, 404-412.	1.7	19
36	Enhancing the mechanical performance of additive manufactured polymer components using atmospheric plasma preâ€treatments. Plasma Processes and Polymers, 2018, 15, 1700141.	1.6	22

#	Article	IF	Citations
37	Microwave Plasmas as a Processing Tool for Tailoring the Surface Properties of Ceramic Coatings. , $2018, , .$		2
38	Evaluation of the effectiveness of kINPen Med plasma jet and bioactive agent therapy in a rat model of wound healing. Biointerphases, 2018, 13, 051002.	0.6	10
39	Additive manufacturing of woven carbon fibre polymer composites. Composite Structures, 2018, 206, 637-643.	3.1	73
40	Evaluation of the mechanical performance of polymer parts fabricated using a production scale multi jet fusion printing process. Additive Manufacturing, 2018, 22, 381-387.	1.7	114
41	Application of additive manufacturing in design & manufacturing engineering education., 2018,,.		10
42	First Evidence of Electrode Reconstruction in Mesoporous NiO After Operation as Photocathode of Dyeâ€Sensitized Solar Cells. ChemistrySelect, 2018, 3, 6729-6736.	0.7	8
43	Converting a Microwave Oven into a Plasma Reactor: A Review. International Journal of Chemical Engineering, 2018, 2018, 1-12.	1.4	10
44	Predictive modelling of the water contact angle of surfaces using attenuated total reflection $\hat{a} \in ``Fourier transform infrared (ATR-FTIR) chemical imaging and partial least squares regression (PLSR). Analyst, The, 2018, 143, 3729-3740.$	1.7	7
45	Surface properties of nanostructured NiO undergoing electrochemical oxidation in 3-methoxy-propionitrile. Applied Surface Science, 2017, 403, 441-447.	3.1	26
46	Advanced diamond-reinforced metal matrix composites via cold spray: Properties and deposition mechanism. Composites Part B: Engineering, 2017, 113, 44-54.	5.9	109
47	Novel cold spray for fabricating graphene-reinforced metal matrix composites. Materials Letters, 2017, 196, 172-175.	1.3	36
48	Evaluation of a reel-to-reel atmospheric plasma system for the treatment of polymers. Surfaces and Interfaces, 2017, 6, 162-169.	1.5	4
49	Cold spraying of WC-Co-Ni coatings using porous WC-17Co powders: Formation mechanism, microstructure characterization and tribological performance. Materials and Design, 2017, 126, 305-313.	3.3	62
50	Limits on the use of cobalt sulfide as anode of p-type dye-sensitized solar cells. Journal Physics D: Applied Physics, 2017, 50, 215501.	1.3	8
51	Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing. Additive Manufacturing, 2017, 16, 146-152.	1.7	452
52	Evaluation of the Effect of Plasma Treatment Frequency on the Activation of Polymer Particles. Plasma Chemistry and Plasma Processing, 2017, 37, 1223-1235.	1.1	14
53	Tailoring oxide-layer formation on titanium substrates using microwave plasma treatments. Surface and Coatings Technology, 2017, 325, 299-307.	2.2	13
54	Deposition of Non-Fouling PEO-Like Coatings Using a Low Temperature Atmospheric Pressure Plasma Jet. Plasma Processes and Polymers, 2016, 13, 241-252.	1.6	17

#	Article	IF	Citations
55	Modified drug release using atmospheric pressure plasma deposited siloxane coatings. Journal Physics D: Applied Physics, 2016, 49, 364005.	1.3	9
56	Antifouling coatings made with Cold Spray onto polymers: Process characterization. CIRP Annals - Manufacturing Technology, 2016, 65, 545-548.	1.7	20
57	Cobalt Sulfide as Counter Electrode in p-Type Dye-Sensitized Solar Cells. ChemistrySelect, 2016, 1, 2808-2815.	0.7	17
58	Investigation of a scalable barrel atmospheric plasma reactor for the treatment of polymer particles. Surface and Coatings Technology, 2016, 308, 435-441.	2.2	13
59	Two-Dimensional Integrated Model for Interaction of Liquid Droplets with Atmospheric Pressure Plasma. Plasma Processes and Polymers, 2015, 12, 1256-1270.	1.6	4
60	Electrochemical Characterization of Nanoporous Nickel Oxide Thin Films Spray-Deposited onto Indium-Doped Tin Oxide for Solar Conversion Scopes. Advances in Condensed Matter Physics, 2015, 2015, 1-18.	0.4	23
61	Achieving enhanced material finishing using cold plasma treatments. Transactions of the Institute of Metal Finishing, 2015, 93, 119-125.	0.6	11
62	Plasmon enhanced fluorescence studies from aligned gold nanorod arrays modified with SiO2 spacer layers. Applied Physics Letters, 2015, 106, .	1.5	32
63	Evaluation of the sensitivity of bacterial and yeast cells to cold atmospheric plasma jet treatments. Biointerphases, 2015, 10, 029507.	0.6	18
64	Comparison of the photoelectrochemical properties of RDS NiO thin films for p-type DSCs with different organic and organometallic dye-sensitizers and evidence of a direct correlation between cell efficiency and charge recombination. Journal of Solid State Electrochemistry, 2015, 19, 975-986.	1.2	43
65	Three-Dimensional Coupled Fluid-Droplet Model for Atmospheric Pressure Plasmas. Plasma Processes and Polymers, 2015, 12, 201-213.	1.6	7
66	Flexible glass substrate based dye sensitized solar cells. Solar Energy Materials and Solar Cells, 2015, 132, 237-244.	3.0	48
67	Electrochemical Characterization of Rapid Discharge Sintering (RDS) NiO Cathodes for Dye-Sensitized Solar Cells of & Dye-Sensitized Solar Cells of & Dye-Sensitized Chemistry, 2015, 06, 176-187.	0.3	27
68	Surface Processing Using Cold Atmospheric Pressure Plasmas. , 2014, , 171-185.		3
69	Differential Sensitivity of Mammalian Cell Lines to Nonâ€Thermal Atmospheric Plasma. Plasma Processes and Polymers, 2014, 11, 391-400.	1.6	21
70	Effect of an active packaging with citrus extract on lipid oxidation and sensory quality of cooked turkey meat. Meat Science, 2014, 96, 1171-1176.	2.7	112
71	Fabrication of Efficient NiO Photocathodes Prepared via RDS with Novel Routes of Substrate Processing for <i>p</i> a€¶ype Dyeâ€6ensitized Solar Cells. ChemElectroChem, 2014, 1, 384-391.	1.7	51
72	Importance of Plasma Thermal Energy Transfer for Plasma Jet Systems. IEEE Transactions on Plasma Science, 2014, 42, 2426-2427.	0.6	8

#	Article	IF	CITATIONS
73	Mechanism of action of an antioxidant active packaging prepared with Citrus extract. LWT - Food Science and Technology, 2014, 59, 1082-1087.	2.5	6
74	Storage Stability of an Antioxidant Active Packaging Coated with Citrus Extract Following a Plasma Jet Pretreatment. Food and Bioprocess Technology, 2014, 7, 2228-2240.	2.6	22
75	Influence of substrate metal alloy type on the properties of hydroxyapatite coatings deposited using a novel ambient temperature deposition technique. Journal of Biomedical Materials Research - Part A, 2014, 102, 871-879.	2.1	11
76	Probing the Redox States at the Surface of Electroactive Nanoporous NiO Thin Films. ACS Applied Materials & Samp; Interfaces, 2014, 6, 143-152.	4.0	131
77	Diagnostics of an O ₂ –He RF Atmospheric Plasma Discharge by Spectral Emission. Journal of the Physical Society of Japan, 2014, 83, 014501.	0.7	22
78	Influence of microwave plasma pre-treatments of TiO2 electrodes on dye-sensitised solar cell efficiencies. Journal of Electroanalytical Chemistry, 2014, 725, 12-18.	1.9	4
79	Flexibility and frictional behaviour of DLC and Si-DLC films deposited on nitrile rubber. Surface and Coatings Technology, 2014, 239, 84-94.	2.2	36
80	Air based atmospheric pressure plasma jet removal of FreKote 710-NC prior to composite-to-composite adhesive bonding. International Journal of Adhesion and Adhesives, 2014, 54, 72-81.	1.4	8
81	Process control of particle deposition systems using acoustic and electrical response signals. Advanced Powder Technology, 2014, 25, 1560-1570.	2.0	0
82	Automatic Computation of Crossing Point Numbers Within Orthogonal Interpolation Line-Graphs. Emergence, Complexity and Computation, 2014, , 195-216.	0.2	0
83	Achieving enhanced DSSC performance by microwave plasma incorporation of carbon into TiO2 photoelectrodes. Applied Surface Science, 2013, 275, 289-294.	3.1	15
84	Laser machined macro and micro structures on glass for enhanced light trapping in solar cells. Applied Physics A: Materials Science and Processing, 2013, 110, 661-665.	1.1	6
85	Protein adhesion on water stable atmospheric plasma deposited acrylic acid coatings. Surface and Coatings Technology, 2013, 234, 53-59.	2.2	26
86	Photo-active and optical properties of bismuth ferrite (BiFeO3): An experimental and theoretical study. Chemical Physics Letters, 2013, 572, 78-84.	1.2	67
87	Fabrication of nano-structured TiO2 coatings using a microblast deposition technique. Applied Surface Science, 2013, 275, 316-323.	3.1	11
88	Plasma functionalized carbon electrode for laccase-catalyzed oxygen reduction by direct electron transfer. Bioelectrochemistry, 2013, 91, 52-61.	2.4	29
89	Dye sensitised solar cells with nickel oxide photocathodes prepared via scalable microwave sintering. Physical Chemistry Chemical Physics, 2013, 15, 2411.	1.3	71
90	Spray-deposited NiO \times films on ITO substrates as photoactive electrodes for p-type dye-sensitized solar cells. Journal of Applied Electrochemistry, 2013, 43, 191-197.	1.5	38

#	Article	IF	Citations
91	Comparison between shot peening and abrasive blasting processes as deposition methods for hydroxyapatite coatings onto a titanium alloy. Surface and Coatings Technology, 2013, 216, 224-231.	2.2	33
92	Evaluation and comparison of hydroxyapatite coatings deposited using both thermal and non-thermal techniques. Surface and Coatings Technology, 2013, 226, 82-91.	2.2	18
93	Raman analysis of DLC and Si-DLC films deposited on nitrile rubber. Surface and Coatings Technology, 2013, 232, 521-527.	2.2	42
94	Electrochemical characterization of NiO electrodes deposited via a scalable powder microblasting technique. Journal of Electroanalytical Chemistry, 2013, 689, 185-192.	1.9	30
95	Investigation of the Formation Mechanism of Aligned Nano-Structured Siloxane Coatings Deposited Using an Atmospheric Plasma Jet. Plasma Processes and Polymers, 2013, 10, 888-903.	1.6	21
96	Biosensor based on laccase immobilized on plasma polymerized allylamine/carbon electrode. Materials Science and Engineering C, 2013, 33, 3197-3205.	3.8	28
97	Overall Migration and Kinetics of Release of Antioxidant Compounds from Citrus Extract-Based Active Packaging. Journal of Agricultural and Food Chemistry, 2013, 61, 12155-12163.	2.4	7
98	Activation of PET Using an RF Atmospheric Plasma System. Plasma Chemistry and Plasma Processing, 2013, 33, 941-957.	1.1	34
99	Protein Adhesion on Atmospheric Plasma Deposited Quaternary Ammonium Salt Coatings. Plasma Processes and Polymers, 2013, 10, 526-534.	1.6	4
100	3-dimensional (orthogonal) structural complexity of time-series data using low-order moment analysis. , 2012, , .		1
101	Effect of Doping (C or N) and Co-Doping (C+N) on the Photoactive Properties of Magnetron Sputtered Titania Coatings for the Application of Solar Water-Splitting. Journal of Nanoscience and Nanotechnology, 2012, 12, 4729-4735.	0.9	10
102	Influence of doping on the photoactive properties of magnetron-sputtered titania coatings: Experimental and theoretical study. Physical Review B, 2012, 86, .	1.1	23
103	Comparing the performance of three commercial atmospheric plasma jets for the activation of PET. , 2012, , .		0
104	Evaluation of Protein Adsorption on Atmospheric Plasma Deposited Coatings Exhibiting Superhydrophilic to Superhydrophobic Properties. Biointerphases, 2012, 7, 31.	0.6	134
105	Diffusion within Ultrathin, Dense Nanoporous Silica Films. Langmuir, 2012, 28, 506-516.	1.6	7
106	Characteristics and tribological performance of DLC and Si-DLC films deposited on nitrile rubber. Surface and Coatings Technology, 2012, 206, 4585-4593.	2.2	45
107	Adhesion and composite micro-hardness of DLC and Si-DLC films deposited on nitrile rubber. Surface and Coatings Technology, 2012, 206, 4881-4886.	2.2	54
108	Evaluation of Microwave Plasma Sintering for the Fabrication of Dye Sensitized Solar Cell (DSSC) Electrodes. Journal of Nanoscience and Nanotechnology, 2012, 12, 4769-4774.	0.9	7

#	Article	IF	CITATIONS
109	PET trays coated with Citrus extract exhibit antioxidant activity with cooked turkey meat. LWT - Food Science and Technology, 2012, 47, 471-477.	2.5	35
110	Generation of Active Species in a Large Atmospheric-Pressure Plasma Jet. IEEE Transactions on Plasma Science, 2012, 40, 2994-3002.	0.6	29
111	Cellular and transcriptomic analysis of human mesenchymal stem cell response to plasma-activated hydroxyapatite coating. Acta Biomaterialia, 2012, 8, 1627-1638.	4.1	35
112	Atmospheric pressure plasma treatment of amorphous polyethylene terephthalate for enhanced heatsealing properties. International Journal of Adhesion and Adhesives, 2012, 35, 1-8.	1.4	27
113	In vitro and in vivo bioactivity of CoBlast hydroxyapatite coating and the effect of impaction on its osteoconductivity. Biotechnology Advances, 2012, 30, 352-362.	6.0	38
114	Evaluation of microwave plasma oxidation treatments for the fabrication of photoactive un-doped and carbon-doped TiO2 coatings. Surface and Coatings Technology, 2012, 206, 4113-4118.	2.2	37
115	Silica nanofilms deposited by atmospheric pressure plasma liquid deposition. Thin Solid Films, 2012, 520, 2619-2626.	0.8	3
116	DC Pulsed Atmospheric-Pressure Plasma Jet Image Information. IEEE Transactions on Plasma Science, 2011, 39, 2326-2327.	0.6	11
117	Use of atmospheric plasma jet treatments for the enhancement of cell adhesion to $1\mathrm{mm}$ internal diameter microwell cell arrays. , $2011,$, .		1
118	Atomistic Simulation of the Formation of Nanoporous Silica Films via Molecular Chemical Vapor Deposition on Nonporous Substrates. Langmuir, 2011, 27, 13052-13063.	1.6	3
119	Novel, Nanoporous Silica and Titania Layers Fabricated by Magnetron Sputtering. ACS Applied Materials & Samp; Interfaces, 2011, 3, 252-260.	4.0	18
120	Effect of Surface Wettability and Topography on the Adhesion of Osteosarcoma Cells on Plasma-modified Polystyrene. Journal of Biomaterials Applications, 2011, 26, 327-347.	1.2	314
121	Atmospheric Pressure Plasma Acoustic Moment Analysis. , 2011, , .		0
122	Influence of the Physical, Structural and Chemical Properties on the Photoresponse Property of Magnetron Sputtered TiO ₂ for the Application of Water Splitting. Journal of Nanoscience and Nanotechnology, 2011, 11, 8642-8651.	0.9	25
123	Application of a novel microwave plasma treatment for the sintering of nickel oxide coatings for use in dye-sensitized solar cells. Surface and Coatings Technology, 2011, 205, S245-S249.	2.2	48
124	Conversion of amorphous TiO2 coatings into their crystalline form using a novel microwave plasma treatment. Surface and Coatings Technology, 2011, 205, S235-S240.	2.2	11
125	Microwave-assisted rapid discharge sintering of a bioactive glass–ceramic. Journal of Materials Science: Materials in Medicine, 2011, 22, 1625-1631.	1.7	6
126	Correlation Between the Electrical and Optical Properties of an Atmospheric Pressure Plasma During Siloxane Coating Deposition. Plasma Chemistry and Plasma Processing, 2011, 31, 139-156.	1.1	22

#	Article	IF	Citations
127	Influence of Gas Type on the Thermal Efficiency of Microwave Plasmas for the Sintering of Metal Powders. Plasma Chemistry and Plasma Processing, 2011, 31, 771-785.	1.1	8
128	Enhancing the Mechanical Properties of Superhydrophobic Atmospheric Pressure Plasma Deposited Siloxane Coatings. Plasma Processes and Polymers, 2011, 8, 305-315.	1.6	54
129	A Comparison between Gas and Atomized Liquid Precursor States in the Deposition of Functional Coatings by Pin Corona Plasma. Plasma Processes and Polymers, 2011, 8, 230-238.	1.6	21
130	Influence of dc Pulsed Atmospheric Pressure Plasma Jet Processing Conditions on Polymer Activation. Plasma Processes and Polymers, 2011, 8, 718-727.	1.6	72
131	Rapid discharge sintering of nickel–diamond metal matrix composites. Journal of Materials Processing Technology, 2011, 211, 1210-1216.	3.1	20
132	Wear resistance enhancement of the titanium alloy Ti–6Al–4V via a novel co-incident microblasting process. Surface and Coatings Technology, 2011, 205, 4941-4947.	2.2	14
133	Deposition of Hybrid Organic–Inorganic Composite Coatings Using an Atmospheric Plasma Jet System. Journal of Nanoscience and Nanotechnology, 2011, 11, 8730-8737.	0.9	20
134	Rapid Discharge Sintering of Powder Metallurgy Components. IEEE Transactions on Plasma Science, 2011, 39, 2594-2595.	0.6	0
135	Atmospheric Pressure Plasma Acoustic Moment Analysis. Complex Systems, 2011, 20, 181-193.	0.9	4
136	Surfaceâ€induced cell signaling events control actin rearrangements and motility. Journal of Biomedical Materials Research - Part A, 2010, 93A, 493-504.	2.1	16
137	Evaluation of the anti-fouling properties of nm thick atmospheric plasma deposited coatings. Surface and Coatings Technology, 2010, 205, 1544-1551.	2.2	47
138	Electrical, Thermal and Optical Diagnostics of an Atmospheric Plasma Jet System. Plasma Chemistry and Plasma Processing, 2010, 30, 537-552.	1.1	47
139	Plasma power can slash small run sintering times. Metal Powder Report, 2010, 65, 10-13.	0.3	6
140	Deposition and characterization of NiOx coatings by magnetron sputtering for application in dye-sensitized solar cells. Surface and Coatings Technology, 2010, 204, 2729-2736.	2.2	56
141	Biological responses to hydroxyapatite surfaces deposited via a co-incident microblasting technique. Biomaterials, 2010, 31, 515-522.	5.7	113
142	Investigation of the Effects of Gas versus Liquid Deposition in an Aerosolâ€Assisted Corona Deposition Process. Plasma Processes and Polymers, 2010, 7, 43-50.	1.6	22
143	Evaluation of Cell Behaviour on Atmospheric Plasma Deposited Siloxane and Fluorosiloxane Coatings. Journal of Adhesion Science and Technology, 2010, 24, 889-903.	1.4	12
144	Mechanical Performance of the Annealed NiTi Shape Memory Alloy Coating onto 316L Stainless Bio-Steel. Defect and Diffusion Forum, 2010, 297-301, 365-369.	0.4	4

#	Article	IF	Citations
145	Adhesion performance of TiN coating with amorphous NiTi alloy interlayer onto 316L stainless biosteel deposited by sputtering process. Surface Engineering, 2010, 26, 499-505.	1.1	16
146	Influence of nm-Thick Atmospheric Plasma Deposited Coatings on the Adhesion of Silicone Elastomer to Stainless Steel. Journal of Adhesion Science and Technology, 2010, 24, 1291-1302.	1.4	13
147	Comparison of thermal and microwaveassisted plasma sintering of nickel–diamond composites. Powder Metallurgy, 2010, 53, 188-190.	0.9	5
148	Comparing Deposition Properties in an Atmospheric Pressure Plasma System Operating in Uniform and Nonuniform Modes. IEEE Transactions on Plasma Science, 2009, 37, 961-969.	0.6	11
149	Effect of Process Parameters on Chemistry, Growth Rate and Nano-Sized Particulate Formation of Atmospheric Plasma Deposited, nm Thick Siloxane Coatings. Journal of Nanoscience and Nanotechnology, 2009, 9, 3506-3513.	0.9	10
150	Evaluation of real-time non-invasive diagnostic tools for the monitoring of a pilot scale atmospheric pressure plasma system. Measurement Science and Technology, 2009, 20, 115703.	1.4	4
151	The Effect of Masterbatch Addition on the Mechanical, Thermal, Optical and Surface Properties of Poly(lactic acid). Journal of Polymers and the Environment, 2009, 17, 28-33.	2.4	23
152	The effect of plasmaâ€polymerised silicon hydrideâ€rich polyhydrogenmethylsiloxane on the adhesion of silicone elastomers. Polymer International, 2009, 58, 996-1001.	1.6	24
153	Deposition of Biodegradable Polycaprolactone Coatings Using an Inâ€line Atmospheric Pressure Plasma System. Plasma Processes and Polymers, 2009, 6, S51.	1.6	17
154	The Influence of Process Parameters on Chemistry, Roughness and Morphology of Siloxane Films Deposited by an Atmospheric Plasma Jet System. Plasma Processes and Polymers, 2009, 6, S530.	1.6	21
155	Influence of Atmospheric Plasma Source and Gas Composition on the Properties of Deposited Siloxane Coatings. Plasma Processes and Polymers, 2009, 6, S483.	1.6	15
156	Evaluation of the mechanical behaviour of nanometre-thick coatings deposited using an atmospheric pressure plasma system. Surface and Coatings Technology, 2009, 203, 2021-2029.	2.2	11
157	Effect of Plasma Exposure on the Chemistry and Morphology of Aerosolâ€Assisted, Plasmaâ€Deposited Coatings. Plasma Processes and Polymers, 2008, 5, 737-744.	1.6	43
158	Thermal stability studies of atmospheric plasma deposited siloxane films deposited on Vycorâ,,¢ glass. Surface and Coatings Technology, 2008, 202, 4130-4136.	2.2	21
159	Enhancing polymer adhesion through surface activation using an in-line atmospheric pressure plasma. International Journal of Nanomanufacturing, 2007, 1, 554.	0.3	10
160	Structural and tribological properties of the plasma nitrided Ti-alloy biomaterials: Influence of the treatment temperature. Surface and Coatings Technology, 2007, 201, 4865-4872.	2.2	50
161	Continuously deposited duplex biomedical coatings. Surface and Coatings Technology, 2007, 201, 5310-5317.	2.2	16
162	Properties of Siloxane Coatings Deposited in a Reel-to-Reel Atmospheric Pressure Plasma System. Plasma Processes and Polymers, 2007, 4, S450-S454.	1.6	36

#	Article	IF	CITATIONS
163	Adhesion of slime producing Staphylococcus epidermidis strains to PVC and diamond-like carbon/silver/fluorinated coatings. Journal of Materials Science: Materials in Medicine, 2006, 17, 679-689.	1.7	65
164	Examination of surface properties andin vitro biological performance of amorphous diamond-like carbon-coated polyurethane. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 78B, 230-236.	1.6	40
165	The influence of platinum on the performance of silver–platinum anti-bacterial coatings. Materials & Design, 2005, 26, 217-222.	5.1	35
166	Deposition of magnetron sputtered TiN+MoSx coating with Ti–TiN graded interlayer. Surface and Coatings Technology, 2005, 200, 1071-1075.	2.2	18
167	Investigation of mechanical properties of TiN+MoSx coating on plasma-nitrided substrate. Surface and Coatings Technology, 2005, 200, 1451-1457.	2.2	13
168	Formation of adherent polypyrrole coatings on Ti and Ti–6Al–4V alloy. Synthetic Metals, 2005, 148, 111-118.	2.1	24
169	Anti-bacterial silver coatings exhibiting enhanced activity through the addition of platinum. Surface and Coatings Technology, 2003, 163-164, 637-640.	2.2	121
170	High pressure diamond and diamond-like carbon deposition using a microwave CAP reactor. Diamond and Related Materials, 2002, 11, 1036-1040.	1.8	28
171	Deposition of anti-bacterial silver coatings on polymeric substrates. Thin Solid Films, 2001, 398-399, 602-606.	0.8	98
172	The adhesion of hydrogenated amorphous carbon films on silicone. Thin Solid Films, 2001, 394, 101-107.	0.8	7
173	Diamond deposition using a novel microwave applicator. Surface and Coatings Technology, 2000, 124, 248-252.	2.2	3
174	Comparison between acid leaching and siliciding pre-treatments on the erosive wear performance of diamond coatings on cemented carbide substrates. Thin Solid Films, 2000, 377-378, 239-242.	0.8	0
175	Asymmetry of †valence†and †conduction†Gaussian π bands in a-C:H and a-C thin films and its origin. Diamond and Related Materials, 2000, 9, 732-735.	1.8	10
176	Interdependency of optical constants inaâ^'Candaâ^'C:Hthin films interpreted in light of the density of electronic states. Physical Review B, 2000, 61, 5002-5010.	1.1	24
177	Diamond deposition using a novel microwave applicator. Diamond and Related Materials, 2000, 9, 693-697.	1.8	5
178	The effect of thermal treatments on the tribological properties of PVD hard coatings. Surface and Coatings Technology, 1999, 116-119, 1133-1137.	2.2	15
179	The effect of refractive index on the friction coefficient of DLC coated polymer substrates. Diamond and Related Materials, 1999, 8, 538-540.	1.8	18
180	The use of refractive index as a measure of diamond-like carbon film quality. Diamond and Related Materials, 1998, 7, 432-434.	1.8	31

#	Article	IF	CITATIONS
181	Evaluation of diamond-like carbon-coated orthopaedic implants. Diamond and Related Materials, 1997, 6, 390-393.	1.8	127
182	Comparison of diamond-like carbon films deposited from 40 kHz and 13.56 MHz r.f. plasmas. Diamond and Related Materials, 1996, 5, 445-447.	1.8	14
183	Application of diamond-like carbon films as hermetic coatings on optical fibres. Diamond and Related Materials, 1996, 5, 492-495.	1.8	23
184	Correlation of molecular hydrogen dissociation and the film quality of diamondlike carbon in plasma enhanced chemical vapor deposition. Applied Physics Letters, 1995, 66, 3152-3154.	1.5	11
185	Quantitative measurements of atomic hydrogen during the deposition of diamond-like carbon films. Diamond and Related Materials, 1995, 4, 324-327.	1.8	5
186	The effect of atomic hydrogen on diamond-like carbon film production. Diamond and Related Materials, 1994, 3, 702-705.	1.8	8
187	Characterization study of diamond and diamond-like carbon. Surface and Coatings Technology, 1992, 53, 177-183.	2.2	15
188	Thermal analysis of some methylhydrazine and methylhydrazinium complexes of copper(II), copper(I) and mixed valence species. Thermochimica Acta, 1988, 130, 43-53.	1.2	1
189	A normal coordinate analysis of monomethylhydrazine and its bidentate nickel (II) chloride complex. Spectrochimica Acta Part A: Molecular Spectroscopy, 1988, 44, 1351-1357.	0.1	2
190	Comparison between the SBF Response of Hydroxyapatite Coatings Deposited Using both a Plasma-Spray and a Novel Co-Incident Micro-Blasting Technique. Key Engineering Materials, 0, 493-494, 483-488.	0.4	5
191	Comparison between Microwave and Microwave Plasma Sintering of Nickel Powders. Materials Science Forum, 0, 672, 289-292.	0.3	5
192	Plasma Processing for Tailoring the Surface Properties of Polymers. , 0, , .		16
193	Effect of the Sintering Procedure on the Photoelectrochemical Performances of Nanostructured Mixed Oxides as Photocathodes of p and Tandem Dye-Sensitized Solar Cells with Superior Conversion Properties 0		O