
Jae-Kyung Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1366126/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Significance of grain refinement on micro-mechanical properties and structures of additively-manufactured CoCrFeNi high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 807, 140898.	2.6	59
2	Significance of grain refinement on microstructure and mechanical properties of an Al-3% Mg alloy processed by high-pressure torsion. Journal of Alloys and Compounds, 2016, 686, 998-1007.	2.8	56
3	Micro-mechanical and tribological properties of aluminum-magnesium nanocomposites processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 684, 318-327.	2.6	55
4	Influence of severe plastic deformation on the microstructure and hardness of a CoCrFeNi high-entropy alloy: A comparison with CoCrFeNiMn. Materials Characterization, 2019, 154, 304-314.	1.9	53
5	Bulk-State Reactions and Improving the Mechanical Properties of Metals through High-Pressure Torsion. Materials Transactions, 2019, 60, 1131-1138.	0.4	46
6	Fabrication of nanocomposites through diffusion bonding under high-pressure torsion. Journal of Materials Research, 2018, 33, 2700-2710.	1.2	41
7	Evolution of microstructure and hardness in Hf25Nb25Ti25Zr25 high-entropy alloy during high-pressure torsion. Journal of Alloys and Compounds, 2019, 788, 318-328.	2.8	37
8	Effect of grain size on the strain rate sensitivity of CoCrFeNi high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 782, 139281.	2.6	32
9	Direct Bonding of Aluminum–Copper Metals through Highâ€Pressure Torsion Processing. Advanced Engineering Materials, 2018, 20, 1800642.	1.6	30
10	Synthesis of a bulk nanostructured metastable Al alloy with extreme supersaturation of Mg. Scientific Reports, 2019, 9, 17186.	1.6	28
11	Effect of post-deformation annealing on the microstructure and micro-mechanical behavior of Zn–Mg hybrids processed by High-Pressure Torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 771, 138578.	2.6	28
12	Microscopic plastic response in a bulk nano-structured TiAl intermetallic compound processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 714, 84-92.	2.6	27
13	Synthesis of Hybrid Nanocrystalline Alloys by Mechanical Bonding through Highâ€Pressure Torsion. Advanced Engineering Materials, 2020, 22, 1901289.	1.6	26
14	Epitaxial Thin Films of a Chalcogenide Perovskite. Chemistry of Materials, 2021, 33, 7457-7464.	3.2	26
15	Thermal stability of a nanocrystalline HfNbTiZr multi-principal element alloy processed by high-pressure torsion. Materials Characterization, 2020, 168, 110550.	1.9	19
16	Structural evolution during nanostructuring of additive manufactured 316L stainless steel by high-pressure torsion. Materials Letters, 2021, 302, 130364.	1.3	16
17	Microstructure evolution in a nanocrystalline CoCrFeNi multi-principal element alloy during annealing. Materials Characterization, 2021, 171, 110807.	1.9	15
18	Phase and structural changes during heat treatment of additive manufactured CrFeCoNi high-entropy alloy. Journal of Alloys and Compounds, 2021, 889, 161495.	2.8	15

Jae-Kyung Han

#	Article	IF	CITATIONS
19	Phase transformation and structure evolution of a Ti-45Al-7.5Nb alloy processed by high-pressure torsion. Journal of Alloys and Compounds, 2019, 787, 1149-1157.	2.8	14
20	Mechanical Bonding of Aluminum Hybrid Alloy Systems through Highâ€Pressure Torsion. Advanced Engineering Materials, 2020, 22, 1900483.	1.6	14
21	Mechanical properties and structural stability of a bulk nanostructured metastable aluminum-magnesium system. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 796, 140050.	2.6	14
22	In Situ Heating Neutron and Xâ€Ray Diffraction Analyses for Revealing Structural Evolution during Postprinting Treatments of Additiveâ€Manufactured 316L Stainless Steel. Advanced Engineering Materials, 2022, 24, .	1.6	8
23	Effect of Highâ€Pressure Torsion on Hardness and Electrical Resistivity of Commercially Pure Cu. Advanced Engineering Materials, 2020, 22, 1900547.	1.6	6
24	Fabrication of hybrid metal systems through the application of high-pressure torsion. IOP Conference Series: Materials Science and Engineering, 2017, 194, 012002.	0.3	4
25	Size Effect on Microstructural Evolution and Micromechanical Responses of Mechanically Bonded Aluminum and Magnesium by Highâ€Pressure Torsion. Advanced Engineering Materials, 2020, 22, 1900971.	1.6	3
26	On the thermal evolution of high-pressure torsion processed titanium aluminide. Materials Letters, 2021, 304, 130650.	1.3	3
27	Thermal stability of nanocrystalline CoCrFeNi multi-principal element alloy: Effect of the degree of severe plastic deformation. Intermetallics, 2022, 142, 107445.	1.8	3
28	Strain-dependent phase transformation mapping of diffusion-bonded nanocrystalline aluminum-magnesium by high-energy synchrotron X-rays. Materials Letters, 2022, 321, 132414.	1.3	3
29	In Situ Heating Neutron and Xâ€Ray Diffraction Analyses for Revealing Structural Evolution during Postprinting Treatments of Additiveâ€Manufactured 316L Stainless Steel. Advanced Engineering Materials, 2022, 24, .	1.6	2
30	Effect of HPT processing followed by long term natural ageing on mechanical and electrical properties of commercially pure Cu. Letters on Materials, 2019, 9, 561-565.	0.2	1
31	Effect of high-pressure torsion on high cycle fatigue of commercially pure Cu: Some insights from formation of surface micro-cracks. Materials Characterization, 2022, 190, 112059.	1.9	0