Mark G Lewis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1366055/publications.pdf Version: 2024-02-01

MADE CIEVUS

#	Article	IF	CITATIONS
1	Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature, 2021, 590, 630-634.	27.8	995
2	DNA vaccine protection against SARS-CoV-2 in rhesus macaques. Science, 2020, 369, 806-811.	12.6	978
3	Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. New England Journal of Medicine, 2020, 383, 1544-1555.	27.0	936
4	SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science, 2020, 369, 812-817.	12.6	789
5	Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. Nature, 2020, 586, 583-588.	27.8	765
6	Animal models for COVID-19. Nature, 2020, 586, 509-515.	27.8	705
7	Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature, 2017, 543, 248-251.	27.8	699
8	Rapid seeding of the viral reservoir prior to SIV viraemia in rhesus monkeys. Nature, 2014, 512, 74-77.	27.8	527
9	REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters. Science, 2020, 370, 1110-1115.	12.6	476
10	Protective efficacy of multiple vaccine platforms against Zika virus challenge in rhesus monkeys. Science, 2016, 353, 1129-1132.	12.6	461
11	Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses. Journal of Experimental Medicine, 2018, 215, 1571-1588.	8.5	366
12	Rapid development of a DNA vaccine for Zika virus. Science, 2016, 354, 237-240.	12.6	348
13	SARS-CoV-2 variant prediction and antiviral drug design are enabled by RBD in vitro evolution. Nature Microbiology, 2021, 6, 1188-1198.	13.3	314
14	Protective efficacy of adenovirus/protein vaccines against SIV challenges in rhesus monkeys. Science, 2015, 349, 320-324.	12.6	303
15	Ad26 vaccine protects against SARS-CoV-2 severe clinical disease in hamsters. Nature Medicine, 2020, 26, 1694-1700.	30.7	275
16	Zika viral dynamics and shedding in rhesus and cynomolgus macaques. Nature Medicine, 2016, 22, 1448-1455.	30.7	270
17	Ad26/MVA therapeutic vaccination with TLR7 stimulation in SIV-infected rhesus monkeys. Nature, 2016, 540, 284-287.	27.8	246
18	Antibody and TLR7 agonist delay viral rebound in SHIV-infected monkeys. Nature, 2018, 563, 360-364.	27.8	246

MARK G LEWIS

#	Article	IF	CITATIONS
19	Immune correlates of protection by mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. Science, 2021, 373, eabj0299.	12.6	244
20	InÂvitro and inÂvivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies. Cell, 2021, 184, 4203-4219.e32.	28.9	228
21	Neutralizing antibody vaccine for pandemic and pre-emergent coronaviruses. Nature, 2021, 594, 553-559.	27.8	199
22	Zika Virus Persistence in the Central Nervous System and Lymph Nodes of Rhesus Monkeys. Cell, 2017, 169, 610-620.e14.	28.9	191
23	Vascular Disease and Thrombosis in SARS-CoV-2-Infected Rhesus Macaques. Cell, 2020, 183, 1354-1366.e13.	28.9	184
24	mRNA-1273 or mRNA-Omicron boost in vaccinated macaques elicits similar B cell expansion, neutralizing responses, and protection from Omicron. Cell, 2022, 185, 1556-1571.e18.	28.9	179
25	Envelope residue 375 substitutions in simian–human immunodeficiency viruses enhance CD4 binding and replication in rhesus macaques. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3413-22.	7.1	170
26	TLR7 agonists induce transient viremia and reduce the viral reservoir in SIV-infected rhesus macaques on antiretroviral therapy. Science Translational Medicine, 2018, 10, .	12.4	133
27	Mosaic RBD nanoparticles protect against challenge by diverse sarbecoviruses in animal models. Science, 2022, 377, .	12.6	120
28	Targeted selection of HIV-specific antibody mutations by engineering B cell maturation. Science, 2019, 366, .	12.6	118
29	Reduced pathogenicity of the SARS-CoV-2 omicron variant in hamsters. Med, 2022, 3, 262-268.e4.	4.4	117
30	Durability and correlates of vaccine protection against Zika virus in rhesus monkeys. Science Translational Medicine, 2017, 9, .	12.4	108
31	Protection against SARS-CoV-2 Beta variant in mRNA-1273 vaccine–boosted nonhuman primates. Science, 2021, 374, 1343-1353.	12.6	83
32	Type I Interferon Upregulates Bak and Contributes to T Cell Loss during Human Immunodeficiency Virus (HIV) Infection. PLoS Pathogens, 2013, 9, e1003658.	4.7	76
33	A SARS-CoV-2 ferritin nanoparticle vaccine elicits protective immune responses in nonhuman primates. Science Translational Medicine, 2022, 14, .	12.4	73
34	Optimization of non-coding regions for a non-modified mRNA COVID-19 vaccine. Nature, 2022, 601, 410-414.	27.8	71
35	Engineered SARS-CoV-2 receptor binding domain improves manufacturability in yeast and immunogenicity in mice. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	68
36	Protection from SARS-CoV-2 Delta one year after mRNA-1273 vaccination in rhesus macaques coincides with anamnestic antibody response in the lung. Cell, 2022, 185, 113-130.e15.	28.9	64

MARK G LEWIS

#	Article	IF	CITATIONS
37	Vaccine protection against the SARS-CoV-2 Omicron variant in macaques. Cell, 2022, 185, 1549-1555.e11.	28.9	59
38	mRNA-1273 protects against SARS-CoV-2 beta infection in nonhuman primates. Nature Immunology, 2021, 22, 1306-1315.	14.5	57
39	Protective antibodies elicited by SARS-CoV-2 spike protein vaccination are boosted in the lung after challenge in nonhuman primates. Science Translational Medicine, 2021, 13, .	12.4	56
40	Protection against SARS-CoV-2 infection by a mucosal vaccine in rhesus macaques. JCI Insight, 2021, 6, .	5.0	52
41	Recapitulation of HIV-1 Env-antibody coevolution in macaques leading to neutralization breadth. Science, 2021, 371, .	12.6	49
42	Low-dose Ad26.COV2.S protection against SARS-CoV-2 challenge in rhesus macaques. Cell, 2021, 184, 3467-3473.e11.	28.9	49
43	A SARS-CoV-2 spike ferritin nanoparticle vaccine protects hamsters against Alpha and Beta virus variant challenge. Npj Vaccines, 2021, 6, 129.	6.0	47
44	Lipid nanoparticle encapsulated nucleoside-modified mRNA vaccines elicit polyfunctional HIV-1 antibodies comparable to proteins in nonhuman primates. Npj Vaccines, 2021, 6, 50.	6.0	46
45	Efficacy and breadth of adjuvanted SARS-CoV-2 receptor-binding domain nanoparticle vaccine in macaques. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	44
46	Protective efficacy of Ad26.COV2.S against SARS-CoV-2 B.1.351 in macaques. Nature, 2021, 596, 423-427.	27.8	40
47	Synthetic multiantigen MVA vaccine COH04S1 protects against SARS-CoV-2 in Syrian hamsters and non-human primates. Npj Vaccines, 2022, 7, 7.	6.0	35
48	Immunity elicited by natural infection or Ad26.COV2.S vaccination protects hamsters against SARS-CoV-2 variants of concern. Science Translational Medicine, 2021, 13, eabj3789.	12.4	32
49	Lack of therapeutic efficacy of an antibody to α ₄ β ₇ in SIVmac251-infected rhesus macaques. Science, 2019, 365, 1029-1033.	12.6	31
50	Intradermal-delivered DNA vaccine induces durable immunity mediating a reduction in viral load in a rhesus macaque SARS-CoV-2 challenge model. Cell Reports Medicine, 2021, 2, 100420.	6.5	28
51	SARS-CoV-2 receptor binding domain displayed on HBsAg virus–like particles elicits protective immunity in macaques. Science Advances, 2022, 8, eabl6015.	10.3	27
52	Persistence of viral RNA in lymph nodes in ART-suppressed SIV/SHIV-infected Rhesus Macaques. Nature Communications, 2021, 12, 1474.	12.8	26
53	Passive Transfer of Vaccine-Elicited Antibodies Protects against SIV in Rhesus Macaques. Cell, 2020, 183, 185-196.e14.	28.9	25
54	A cautionary perspective regarding the isolation and serial propagation of SARS-CoV-2 in Vero cells. Npj Vaccines, 2021, 6, 83.	6.0	25

MARK G LEWIS

#	Article	IF	CITATIONS
55	New SHIVs and Improved Design Strategy for Modeling HIV-1 Transmission, Immunopathogenesis, Prevention, and Cure. Journal of Virology, 2021, 95, .	3.4	21
56	Propagation of SARS-CoV-2 in Calu-3 Cells to Eliminate Mutations in the Furin Cleavage Site of Spike. Viruses, 2021, 13, 2434.	3.3	19
57	Prior infection with SARS-CoV-2 WA1/2020 partially protects rhesus macaques against reinfection with B.1.1.7 and B.1.351 variants. Science Translational Medicine, 2021, 13, eabj2641.	12.4	15
58	Preclinical evaluation of a candidate naked plasmid DNA vaccine against SARS-CoV-2. Npj Vaccines, 2021, 6, 156.	6.0	15
59	Defining the determinants of protection against SARS-CoV-2 infection and viral control in a dose-down Ad26.CoV2.S vaccine study in nonhuman primates. PLoS Biology, 2022, 20, e3001609.	5.6	14
60	A homologous or variant booster vaccine after Ad26.COV2.S immunization enhances SARS-CoV-2–specific immune responses in rhesus macaques. Science Translational Medicine, 2022, 14, eabm4996.	12.4	13
61	Control of SARS-CoV-2 infection after Spike DNA or Spike DNA+Protein co-immunization in rhesus macaques. PLoS Pathogens, 2021, 17, e1009701.	4.7	12
62	Therapeutic efficacy of combined active and passive immunization in ART-suppressed, SHIV-infected rhesus macaques. Nature Communications, 2022, 13, .	12.8	12
63	A combination of two human neutralizing antibodies prevents SARS-CoV-2 infection in cynomolgus macaques. Med, 2022, 3, 188-203.e4.	4.4	11
64	An intranasally administrated SARS-CoV-2 beta variant subunit booster vaccine prevents beta variant replication in rhesus macaques. , 2022, 1, .		10
65	COH04S1 and beta sequence-modified vaccine protect hamsters from SARS-CoV-2 variants. IScience, 2022, 25, 104457.	4.1	8
66	Protective Efficacy of Gastrointestinal SARS-CoV-2 Delivery against Intranasal and Intratracheal SARS-CoV-2 Challenge in Rhesus Macaques. Journal of Virology, 2022, 96, JVI0159921.	3.4	5
67	Therapeutic efficacy of an Ad26/MVA vaccine with SIV gp140 protein and vesatolimod in ART-suppressed rhesus macaques. Npj Vaccines, 2022, 7, 53.	6.0	4
68	Development of an In Vivo Probe to Track SARS-CoV-2 Infection in Rhesus Macaques. Frontiers in Immunology, 2021, 12, 810047.	4.8	3
69	Passive transfer of Ad26.COV2.S-elicited IgG from humans attenuates SARS-CoV-2 disease in hamsters. Npj Vaccines, 2022, 7, 2.	6.0	2