
Viktor Zharkov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1365988/publications.pdf Version: 2024-02-01

VINTOR THARKON

#	Article	lF	CITATIONS
1	Estimation of the Efficiency of Laser Excitation of Phosphorus Oxide Molecules. Atmospheric and Oceanic Optics, 2021, 34, 302-312.	1.3	5
2	Experimental Study of the Dynamics of Laser Fragmentation of Nitrobenzene Vapors. Russian Physics Journal, 2020, 63, 317-322.	0.4	1
3	Alignment Technique and Quality Check of the Primary Mirror of the Siberian Lidar Station. Atmospheric and Oceanic Optics, 2020, 33, 696-701.	1.3	4
4	Influence of Substrate Material on the Sensitivity of the Raman Lidar Technique for Detecting Traces of High-Energy Materials. Atmospheric and Oceanic Optics, 2019, 32, 361-365.	1.3	2
5	Effectiveness of Combined Laser and Gas Chromatographic Remote Detection of Traces of Explosives. Atmospheric and Oceanic Optics, 2019, 32, 227-233.	1.3	11
6	Evaluation of Limiting Sensitivity of the One-Color Laser Fragmentation/Laser-Induced Fluorescence Method in Detection of Nitrobenzene and Nitrotoluene Vapors in the Atmosphere. Atmosphere, 2019, 10, 692.	2.3	5
7	A Multi-Aperture Transceiver System of a Lidar with Narrow Field of View and Minimal Dead Zone. Atmospheric and Oceanic Optics, 2018, 31, 690-697.	1.3	5
8	Technique for Increasing the Selectivity of the Method of Laser Fragmentation/Laser-Induced Fluorescence. Russian Physics Journal, 2018, 61, 25-28.	0.4	1
9	Numerical Method of Cavity Adjustment by the Output Beam Image. Atmospheric and Oceanic Optics, 2018, 31, 324-328.	1.3	1
10	Increasing the Sensitivity of Lidar Systems Based on the LF/LIF Method. Russian Physics Journal, 2017, 60, 1353-1359.	0.4	0
11	Remote detection of traces of high-energy materials on an ideal substrate using the Raman effect. Atmospheric and Oceanic Optics, 2017, 30, 604-608.	1.3	7
12	Experimental Evaluation of the UV Raman Lidar Sensitivity in Detection of Traces of Chemical Compounds. EPJ Web of Conferences, 2016, 119, 05012.	0.3	0
13	Siberian lidar station: instruments and results. , 2016, , .		0
14	Lidar Detection of Explosive Vapors in the Atmosphere. Russian Physics Journal, 2016, 58, 1217-1225.	0.4	18
15	Energy density of laser radiation as a factor limiting the sensitivity of the Raman-lidar method. , 2016, ,		0
16	Remote detection of traces of high energetic materials. , 2015, , .		0
17	Mathematical model of a two-stage process of laser fragmentation of nitrocompound molecules and subsequent laser-induced fluorescence of characteristic fragments. Proceedings of SPIE, 2015, , .	0.8	0
18	Enhancement of the Raman lidar sensitivity using overtones of vibrational-rotational Raman bands of oxygen or nitrogen as the reference signals. Proceedings of SPIE, 2015, , .	0.8	0

#	Article	IF	CITATIONS
19	Simulation of the Raman lidar signal for localized source of atmospheric pollution. , 2014, , .		0
20	Experimental estimation of Raman lidar sensitivity in the middle UV. Atmospheric and Oceanic Optics, 2013, 26, 320-325.	1.3	9
21	Narrow-band tunable laser system for a lidar facility. Russian Physics Journal, 2012, 55, 609-615.	0.4	18