List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1365914/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Woody tissue maintenance respiration of four conifers in contrasting climates. Oecologia, 1995, 101, 133-140.	2.0	228
2	Dynamics of Canopy Structure and Light Interception in Pinus Elliottii Stands, North Florida. Ecological Monographs, 1991, 61, 33-51.	5.4	191
3	Soil CO ₂ evolution in Florida slash pine plantations. II. Importance of root respiration. Canadian Journal of Forest Research, 1987, 17, 330-333.	1.7	183
4	Soil CO ₂ evolution in Florida slash pine plantations. I. Changes through time. Canadian Journal of Forest Research, 1987, 17, 325-329.	1.7	180
5	Urbanization as a land use change driver of forest ecosystem services. Land Use Policy, 2016, 54, 188-199.	5.6	138
6	The influence of salinity on seagrass growth, survivorship, and distribution within Biscayne Bay, Florida: Field, experimental, and modeling studies. Estuaries and Coasts, 2003, 26, 131-141.	1.7	114
7	Organic matter dynamics of fine roots in plantations of slash pine (<i>Pinuselliottii</i>) in north Florida. Canadian Journal of Forest Research, 1986, 16, 529-538.	1.7	113
8	Ultrafiltration is theoretically equivalent to equilibrium dialysis but much simpler to carry out. Archives of Biochemistry and Biophysics, 1978, 187, 132-137.	3.0	111
9	Ground-based LIDAR: a novel approach to quantify fine-scale fuelbed characteristics. International Journal of Wildland Fire, 2009, 18, 676.	2.4	102
10	Population Dynamics of the Dioecious Amazonian Palm <i>Mauritia flexuosa</i> : Simulation Analysis of Sustainable Harvesting. Biotropica, 2008, 40, 550-558.	1.6	100
11	Simulated effects of logging on carbon storage in dipterocarp forest. Journal of Applied Ecology, 2000, 37, 267-283.	4.0	96
12	Ecological conceptual models: a framework and case study on ecosystem management for South Florida sustainability. Science of the Total Environment, 2001, 274, 231-253.	8.0	87
13	Carbon exchange of a mature, naturally regenerated pine forest in north Florida. Global Change Biology, 2008, 14, 2523-2538.	9.5	87
14	An exploratory analysis of phosphorus transformations in tropical soils using structural equation modeling. Biogeochemistry, 2014, 118, 453-469.	3.5	76
15	Linking complex forest fuel structure and fire behaviour at fine scales. International Journal of Wildland Fire, 2012, 21, 882.	2.4	75
16	Chemical diversity – highlighting a species richness and ecosystem function disconnect. Oikos, 2007, 116, 1831-1840.	2.7	72
17	Controls on carbon dynamics by ecosystem structure and climate for southeastern U.S. slash pine plantations. Ecological Monographs, 2012, 82, 101-128.	5.4	70
18	Carbohydrate dynamics in mature Pinuselliottii var. elliottii trees. Canadian Journal of Forest Research, 1991, 21, 1742-1747.	1.7	62

#	Article	IF	CITATIONS
19	Insitu needle and fine root respiration in mature slash pine (Pinuselliottii) trees. Canadian Journal of Forest Research, 1991, 21, 1589-1595.	1.7	55
20	Simulation of the carbon dynamics of a Florida slash pine plantation. Ecological Modelling, 1993, 66, 231-249.	2.5	55
21	Ecosystem carbon stocks in <i>Pinus palustris</i> forests. Canadian Journal of Forest Research, 2014, 44, 476-486.	1.7	52
22	Estimating Pinus palustris tree diameter and stem volume from tree height, crown area and stand-level parameters. Journal of Forestry Research, 2014, 25, 43-52.	3.6	48
23	Soil phosphorus availability and fine root proliferation in Amazonian agroforests 6 years following forest conversion. Agriculture, Ecosystems and Environment, 2001, 83, 271-284.	5.3	45
24	Forest management effects on in situ and ex situ slash pine forest carbon balance. Forest Ecology and Management, 2010, 260, 795-805.	3.2	45
25	Spatially-explicit modeling of multi-scale drivers of aboveground forest biomass and water yield in watersheds of the Southeastern United States. Journal of Environmental Management, 2017, 199, 158-171.	7.8	42
26	Ecosystem carbon density and allocation across a chronosequence of longleaf pine forests. Ecological Applications, 2017, 27, 244-259.	3.8	40
27	Modeling the dynamics of three functional groups of macroalgae in tropical seagrass habitats. Ecological Modelling, 2004, 175, 25-54.	2.5	38
28	Longleaf pine (Pinus palustris) and hardwood dynamics in a fire-maintained ecosystem: A simulation approach. Ecological Modelling, 2011, 222, 2733-2750.	2.5	38
29	A framework for identifying carbon hotspots and forest management drivers. Journal of Environmental Management, 2013, 114, 293-302.	7.8	37
30	Parameterization of the 3-PG model for Pinus elliottii stands using alternative methods to estimate fertility rating, biomass partitioning and canopy closure. Forest Ecology and Management, 2014, 327, 55-75.	3.2	31
31	Effects of silvicultural intensification on timber yields, carbon dynamics, and tree species composition in a dipterocarp forest in Kalimantan, Indonesia: An individual-tree-based model simulation. Forest Ecology and Management, 2017, 390, 104-118.	3.2	31
32	Nutrient Recycling and Stability: A Reevaluation. Ecology, 1977, 58, 660-666.	3.2	30
33	The importance of multimodel projections to assess uncertainty in projections from simulation models. Ecological Applications, 2009, 19, 1680-1692.	3.8	30
34	The earliest House Sparrow introductions to North America. Biological Invasions, 2010, 12, 2955-2958.	2.4	30
35	Viability of combined timber and non-timber harvests for one species: A Carapa guianensis case study. Ecological Modelling, 2012, 246, 147-156.	2.5	29
36	Simulation of a Biscayne Bay, Florida commercial sponge population: effects of harvesting after Hurricane Andrew. Ecological Modelling, 1999, 118, 1-15.	2.5	28

#	Article	IF	CITATIONS
37	Modeling cotton production response to shading in a pecan alleycropping system using CROPGRO. Agroforestry Systems, 2009, 76, 423-435.	2.0	27
38	Whole-tree water relations of co-occurring mature Pinus palustris and Pinus elliottii var. <i>elliottii</i> . Canadian Journal of Forest Research, 2011, 41, 509-523.	1.7	27
39	Modeling the effects of forest management on in situ and ex situ longleaf pine forest carbon stocks. Forest Ecology and Management, 2015, 355, 24-36.	3.2	26
40	A reassessment of the role of propagule pressure in influencing fates of passerine introductions to New Zealand. Biodiversity and Conservation, 2011, 20, 607-623.	2.6	23
41	Individual Tree Diameter, Height, and Volume Functions for Longleaf Pine. Forest Science, 2014, 60, 43-56.	1.0	23
42	A critique of the historicalâ€fireâ€fegime concept in conservation. Conservation Biology, 2017, 31, 976-985.	4.7	23
43	Analyses of transient characteristics of a nutrient cycling model. Ecological Modelling, 1981, 12, 105-131.	2.5	22
44	Historical records of passerine introductions to New Zealand fail to support the propagule pressure hypothesis. Biodiversity and Conservation, 2012, 21, 297-307.	2.6	22
45	A regional carbon storage simulation for large-scale biomass plantations. Ecological Modelling, 1987, 36, 171-180.	2.5	21
46	Mapping potential carbon and timber losses from hurricanes using a decision tree and ecosystem services driver model. Journal of Environmental Management, 2013, 129, 599-607.	7.8	21
47	Population dynamics of a tropical palm: use of a genetic algorithm for inverse parameter estimation. Ecological Modelling, 2004, 177, 119-127.	2.5	19
48	Modeling Survival, Yield, Volume Partitioning and Their Response to Thinning for Longleaf Pine Plantations. Forests, 2012, 3, 1104-1132.	2.1	17
49	A reassessment of historical records of avian introductions to Australia: no case for propagule pressure. Biodiversity and Conservation, 2012, 21, 155-174.	2.6	16
50	Tree diameter increments following silvicultural treatments in a dipterocarp forest in Kalimantan, Indonesia: A mixed-effects modelling approach. Forest Ecology and Management, 2017, 396, 195-206.	3.2	16
51	Carbon storage patterns in Douglas-fir ecosystems. Canadian Journal of Forest Research, 1984, 14, 855-859.	1.7	15
52	NITROGEN AND PHOSPHORUS CYCLING IN AN AMAZONIAN AGROFOREST EIGHT YEARS FOLLOWING FOREST CONVERSION. , 2000, 10, 1633-1647.		15
53	Converting Even-Aged Plantations to Uneven-Aged Stand Conditions: A Simulation Analysis of Silvicultural Regimes with Slash Pine (Pinus elliottii Engelm.). Forest Science, 2014, 60, 893-906.	1.0	15
54	Homeostasis and nutrient limitation of benthic autotrophs in natural chemostats. Limnology and Oceanography, 2014, 59, 2101-2111.	3.1	14

#	Article	IF	CITATIONS
55	Variation in biomass distribution and nutrient content in loblolly pine (Pinus taeda L.) clones having contrasting crown architecture and growth efficiency. Forest Ecology and Management, 2015, 342, 84-92.	3.2	14
56	SPM2: A simulation model for slash pine (Pinus elliottii) forests. Forest Ecology and Management, 2000, 126, 201-212.	3.2	13
57	The interaction of seedling density dependence and fire in a matrix population model of longleaf pine (Pinus palustris). Ecological Modelling, 2006, 198, 487-494.	2.5	13
58	ls propagule size the critical factor in predicting introduction outcomes in passeriform birds?. Biological Invasions, 2013, 15, 1449-1458.	2.4	13
59	Respecification of structural equation models for the P cycle in tropical soils. Nutrient Cycling in Agroecosystems, 2015, 102, 347-358.	2.2	13
60	Understory plant biomass dynamics of prescribed burned Pinus palustris stands. Forest Ecology and Management, 2015, 344, 84-94.	3.2	13
61	Loblolly Pine Productivity and Water Relations in Response to Throughfall Reduction and Fertilizer Application on a Poorly Drained Site in Northern Florida. Forests, 2016, 7, 214.	2.1	13
62	Individual-Tree Diameter Growth Models for Mixed Nothofagus Second Growth Forests in Southern Chile. Forests, 2017, 8, 506.	2.1	13
63	Are Brazil nut populations threatened by fruit harvest?. Biotropica, 2018, 50, 50-59.	1.6	13
64	Optimizing simulated fertilizer additions using a genetic algorithm with a nutrient uptake model. Ecological Modelling, 2005, 185, 271-281.	2.5	11
65	Modeling the Complex Impacts of Timber Harvests to Find Optimal Management Regimes for Amazon Tidal Floodplain Forests. PLoS ONE, 2015, 10, e0136740.	2.5	11
66	Title is missing!. Environmental Modeling and Assessment, 2000, 5, 125-137.	2.2	10
67	Development of a GPS Forest Signal Absorption Coefficient Index. Forests, 2018, 9, 226.	2.1	10
68	Population Dynamics of a Commercial Sponge in Biscayne Bay, Florida. Estuarine, Coastal and Shelf Science, 2001, 53, 13-23.	2.1	9
69	Addressing multi-use issues in sustainable forest management with signal-transfer modeling. Forest Ecology and Management, 2002, 165, 295-304.	3.2	8
70	Predicting Understory Species Richness from Stand and Management Characteristics Using Regression Trees. Forests, 2013, 4, 122-136.	2.1	8
71	Sensitivity assessment of metafrontier data envelopment analysis for soil carbon sequestration efficiency. Ecological Indicators, 2021, 125, 107602.	6.3	8
72	Constructing a seasonal carbon balance for a forest ecosystem. Climate Research, 1993, 3, 7-12.	1.1	8

WENDELL P CROPPER JR

#	Article	IF	CITATIONS
73	Assessing potential habitat suitability of parasitic plant: A case study of Rafflesia arnoldii and its host plants. Global Ecology and Conservation, 2022, 34, e02063.	2.1	8
74	Establishment success in introduced passeriforms of New Zealand: evidence for a Franklin Delano Roosevelt effect. Biological Invasions, 2014, 16, 233-237.	2.4	7
75	A comparison of success rates of introduced passeriform birds in New Zealand, Australia and the United States. PeerJ, 2014, 2, e509.	2.0	7
76	Computer simulation of long-term carbon storage patterns in Florida slash pine plantations. Forest Ecology and Management, 1983, 6, 101-114.	3.2	6
77	Estimating signal loss in pine forests using hemispherical sky oriented photos. Ecological Informatics, 2017, 38, 82-88.	5.2	6
78	Pedotransfer Functions to Estimate Parameters for Soil Phosphorus Models. Soil Science Society of America Journal, 2017, 81, 210-213.	2.2	6
79	Predicting phosphorus use efficiency and allocation in eucalypt plantations. Forest Ecology and Management, 2020, 460, 117859.	3.2	6
80	Developmental History of Soil Concepts from a Scientific Perspective. Applied Sciences (Switzerland), 2021, 11, 4275.	2.5	6
81	Summary of Simulated Forest Responses to Climate Change in the Southeastern United States. Ecological Studies, 1998, , 479-500.	1.2	6
82	Inconsistencies among secondary sources of Chukar Partridge (<i>Alectoris chukar</i>) introductions to the United States. PeerJ, 2015, 3, e1447.	2.0	6
83	Propagule pressure does not consistently predict the outcomes of exotic bird introductions. PeerJ, 2019, 7, e7637.	2.0	6
84	Scaling Global Climate Projections to Local Biological Assessments. Environment, 1988, 30, 31-34.	1.4	5
85	Multiscale modeling of longleaf pine (<i>Pinus palustris</i>). Canadian Journal of Forest Research, 2007, 37, 2080-2089.	1.7	5
86	Application of remote sensing, an artificial neural network leaf area model, and a process-based simulation model to estimate carbon storage in Florida slash pine plantations. Journal of Forestry Research, 2010, 21, 171-176.	3.6	5
87	An inverse analysis of a matrix population model using a genetic algorithm. Ecological Informatics, 2012, 7, 41-45.	5.2	5
88	Estimating GPS Signal Loss in a Natural Deciduous Forest Using Sky Photography. Papers in Applied Geography, 2017, 3, 119-128.	1.4	5
89	A comment on the role of propagule pressure in the establishment success of introduced birds. Oecologia, 2015, 177, 317-319.	2.0	4
90	Patterns of success in game bird introductions in the United States. Biodiversity and Conservation, 2018, 27, 967-979.	2.6	4

#	Article	IF	CITATIONS
91	State analysis of ecological models: model reactions to parameter change. Ecological Modelling, 1995, 82, 99-104.	2.5	3
92	Exploring stand and tree variability in mixed Nothofagus second-growth forests through multivariate analyses. Bosque, 2018, 39, 397-410.	0.3	3
93	MAESTRO Simulations of the Response of Loblolly Pine to Elevated Temperatures and Carbon Dioxide. Ecological Studies, 1998, , 327-339.	1.2	3
94	Habitat preferences, spatial distribution and current population status of endangered giant flower Amorphophallus titanum. Biodiversity and Conservation, 2022, 31, 831-854.	2.6	3
95	Stand-Level Components of a Growth and Yield Model for Nothofagus Mixed Forests from Southern Chile. Forests, 2020, 11, 810.	2.1	2
96	Swidden fallow management to increase landscape-level Brazil nut productivity. Forest Ecology and Management, 2020, 464, 118019.	3.2	2
97	Chemical diversity – highlighting a species richness and ecosystem function disconnect. Oikos, 2007, 116, 1831-1840.	2.7	2
98	Holistic aboveground ecological productivity efficiency modeling using data envelopment analysis in the southeastern U.S. Science of the Total Environment, 2022, 824, 153802.	8.0	2
99	Variability in the carbon isotopic composition of foliage carbon pools (soluble carbohydrates, waxes) and respiration fluxes in southeastern U.S. pine forests. Journal of Geophysical Research, 2012, 117, .	3.3	1
100	Predicting broad-scale carbon loss and recovery in managed tropical forests. Carbon Management, 2013, 4, 575-577.	2.4	1
101	Problems of scale in assessing the role of propagule pressure in influencing introduction outcomes illustrated by Common Pheasant (Phasianus colchicus) introductions. Biological Invasions, 2020, 22, 1161-1168.	2.4	1
102	A quantitative assessment of site-level factors in influencing Chukar (<i>Alectoris chukar</i>) introduction outcomes. PeerJ, 2021, 9, e11280.	2.0	1
103	Modeling the Potential Sensitivity of Slash Pine Stem Growth to Increasing Temperature and Carbon Dioxide. Ecological Studies, 1998, , 353-366.	1.2	1
104	Multi-Model Projections for Evaluating Sustainable Timber and Seed Harvest of Carapa guianensis. Forest Science, 2017, , .	1.0	1
105	Ecosystem Responses to Elevated CO2. Ecology, 1996, 77, 1956-1956.	3.2	0
106	Habitat Suitability, Population Structure and Conservation Status of Pinanga arinasae (Arecaceae), an Endemic Palm in Bali Island, Indonesia. Diversity, 2022, 14, 10.	1.7	0