
Nikolaos D Alexopoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1365638/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessing the potential of nano-reinforced blended lime-cement pastes as self-sensing materials for restoration applications. Materials Today: Proceedings, 2022, 62, 2482-2487.	1.8	3
2	Dispersion of Multi-Walled Carbon Nanotubes into White Cement Mortars: The Effect of Concentration and Surfactants. Nanomaterials, 2022, 12, 1031.	4.1	27
3	Self-diagnostic lime-pozzolan-cement restoration nanocomposites: Effect of graphene modification and cyclic loading level under compression. Developments in the Built Environment, 2022, 10, 100068.	4.0	6
4	Effect of niobium oxide thin film on the long-term immersion corrosion of the 2198-T851 aluminium alloy. Materialia, 2022, 22, 101407.	2.7	7
5	Corrosion resistance of aluminum alloy 2198 for different ageing tempers. Procedia Structural Integrity, 2022, 37, 941-947.	0.8	3
6	Study of different binders for restoration applications. Procedia Structural Integrity, 2022, 41, 744-751.	0.8	3
7	Experimental and numerical investigation of laser beam-welded Al–Cu–Li joints using micro-mechanical characteristics. Journal of Materials Research and Technology, 2022, 19, 2431-2446.	5.8	3
8	Monitoring of aeronautical composites with embedded FOBG sensor: Part l—Manufacturing and strain response under incremental fatigue loading spectrum. Material Design and Processing Communications, 2021, 3, e191.	0.9	0
9	Monitoring of aeronautical composites with embedded FOBG sensor: Part II—Strain response under fatigue and alternate bending loading spectrum. Material Design and Processing Communications, 2021, 3, e204.	0.9	0
10	Corrosion-induced mechanical properties degradation of Al-Cu-Li (2198-T351) aluminium alloy and the role of side-surface cracks. Corrosion Science, 2021, 183, 109330.	6.6	14
11	Fatigue and fracture toughness of electron beam welded joints of aluminum alloy 6156 (Al–Mg–Si) for aerospace applications. Fatigue and Fracture of Engineering Materials and Structures, 2021, 44, 2610-2624.	3.4	6
12	Effect of Solution Aggressiveness on the Crack Growth Resistance and Cracking Mechanism of AA2024-T3. Corrosion, 2021, 77, 1029-1040.	1.1	2
13	Effect of filler wire and post weld heat treatment on the mechanical properties of laser beam-welded AA2198. Materials Characterization, 2021, 178, 111257.	4.4	9
14	In situ control of graphene oxide dispersions with a small impedance sensor. Nanotechnology, 2021, 33, .	2.6	5
15	The effect of prior adhesive bonding on the corrosion behavior of AA2024 FSWed single lap joints. Mechanics of Materials, 2021, , 104122.	3.2	4
16	Tailoring the binder matrix of lime-based binders for restoration interventions with regard to mechanical compatibility. Construction and Building Materials, 2021, 315, 125717.	7.2	6
17	Simulation of the mechanical behavior of pre-corroded AA2024-T3 specimens with equivalent surface notches. Materials Today: Proceedings, 2020, 32, 254-259.	1.8	0
18	On the influence of laser beam welding parameters for autogenous AA2198 welded joints. International Journal of Advanced Manufacturing Technology, 2020, 110, 2079-2092.	3.0	14

NIKOLAOS D ALEXOPOULOS

#	Article	IF	CITATIONS
19	Study of Reduced Graphene Oxide Dispersions via Electrical Impedance Spectroscopy. Procedia Structural Integrity, 2020, 28, 1679-1685.	0.8	3
20	Mechanical and electrical properties of hydraulic lime pastes reinforced with carbon nanomaterials. Procedia Structural Integrity, 2020, 28, 1694-1701.	0.8	6
21	Corrosion behaviour of AA2198–T8 and AA2024-T3 alloy in 3.5% aqueous solution. Procedia Structural Integrity, 2020, 28, 2297-2303.	0.8	11
22	Calculation of a composite material's modulus of elasticity: comparison of results using fixed angles orientation and RVE with those using random orientation tensor and multi-step homogenization. Procedia Structural Integrity, 2020, 28, 2132-2141.	0.8	2
23	Damage monitoring of different concentration carbon nanotube/epoxy glass fiber reinforced composites under quasi-static incremental loadings. Materials Today: Proceedings, 2019, 12, 262-270.	1.8	4
24	Simulation of the corrosion-induced damage on aluminum alloy 2024 specimens with equivalent surface notches. Frattura Ed Integrita Strutturale, 2019, 13, 342-353.	0.9	6
25	Influence of rotation speed on mechanical properties and corrosion sensitivity of friction stir welded AA2024‶3 joints. Materials and Corrosion - Werkstoffe Und Korrosion, 2018, 69, 1016-1024.	1.5	14
26	Investigating the impact of sustainability in the production of aeronautical subscale components. Journal of Cleaner Production, 2018, 176, 785-799.	9.3	23
27	Effect of corrosion exposure on the mechanical performance of 2024 aluminum alloy electron beam welded joints. Procedia Structural Integrity, 2018, 10, 73-78.	0.8	3
28	Effect of corrosion exposure on aluminum alloy 2024 for different artificial ageing conditions. Procedia Structural Integrity, 2018, 10, 79-84.	0.8	8
29	Experimental analysis of constant-amplitude fatigue properties in 6156 (Al-Mg-Si) sheet aluminum alloy. Journal of Strain Analysis for Engineering Design, 2018, 53, 676-686.	1.8	1
30	Corrosion performance and mechanical properties of friction stir welded AA2024â€₹3 joints under different corrosion solution exposure. Materials and Corrosion - Werkstoffe Und Korrosion, 2017, 68, 970-976.	1.5	11
31	Effect of ageing on precipitation kinetics, tensile and work hardening behavior of Al-Cu-Mg (2024) alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 700, 457-467.	5.6	63
32	Mechanical behavior of MWCNTs based mixed-matrix polymeric and carbon hollow fiber membranes. Separation and Purification Technology, 2017, 183, 21-31.	7.9	11
33	Synergy of corrosion-induced micro-cracking and hydrogen embrittlement on the structural integrity of aluminium alloy (Al-Cu-Mg) 2024. Corrosion Science, 2017, 121, 32-42.	6.6	34
34	Beyond the Hype: On Using Blockchains in Trust Management for Authentication. , 2017, , .		50
35	Fracture related mechanical properties of low and high graphene reinforcement of epoxy nanocomposites. Composites Science and Technology, 2017, 150, 194-204.	7.8	65
36	Anisotropy and size effect in tensile mechanical properties of Al-Cu-Li 2198 alloy. Procedia Structural Integrity, 2017, 5, 13-18.	0.8	18

#	Article	IF	CITATIONS
37	Effect of powder size on the longâ€term corrosion performance of pure aluminium coatings on mild steel by cold spraying. Materials and Corrosion - Werkstoffe Und Korrosion, 2017, 68, 546-551.	1.5	6
38	Strain monitoring of cement-based materials with embedded polyvinyl alcohol - carbon nanotube (PVA-CNT) fibers. Frattura Ed Integrita Strutturale, 2017, 11, 61-73.	0.9	0
39	Mechanical properties degradation of (Al-Cu-Li) 2198 alloy due to corrosion exposure. Procedia Structural Integrity, 2016, 2, 597-603.	0.8	19
40	Effect of artificial aging on the mechanical performance of (Al-Cu) 2024 and (Al-Cu-Li) 2198 aluminum alloys. Procedia Structural Integrity, 2016, 2, 3782-3783.	0.8	11
41	Effect of corrosion-induced hydrogen embrittlement and its degradation impact on tensile properties and fracture toughness of (Al-Cu-Mg) 2024 alloy. Procedia Structural Integrity, 2016, 2, 573-580.	0.8	6
42	Tensile mechanical performance of electron-beam welded joints from aluminum alloy (Al-Mg-Si) 6156. Procedia Structural Integrity, 2016, 2, 3539-3545.	0.8	3
43	Laser beam welded structures for a regional aircraft: weight, cost and carbon footprint savings. Journal of Manufacturing Systems, 2016, 39, 38-52.	13.9	28
44	The effect of artificial ageing heat treatments on the corrosion-induced hydrogen embrittlement of 2024 (Al–Cu) aluminium alloy. Corrosion Science, 2016, 102, 413-424.	6.6	50
45	Fracture mechanical behaviour of laser beam-welded AA2198 butt joints and integral structures. International Journal of Structural Integrity, 2015, 6, 787-798.	3.3	9
46	Fatigue Behavior of Aerospace Al-Cu, Al-Li and Al-Mg-Si Sheet Alloys. Advanced Materials Research, 2015, 1099, 1-8.	0.3	0
47	The effect of Cu, Ag, Sm and Sr additions on the statistical distributions of Si particles and tensile properties in A357–T6 alloy castings. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 604, 40-45.	5.6	21
48	Fatigue Behavior of Inconel 718 TIG Welds. Journal of Materials Engineering and Performance, 2014, 23, 2973-2983.	2.5	14
49	Fatigue behavior of the aeronautical Al–Li (2198) aluminum alloy under constant amplitude loading. International Journal of Fatigue, 2013, 56, 95-105.	5.7	96
50	Improved strain sensing performance of glass fiber polymer composites with embedded pre-stretched polyvinyl alcohol–carbon nanotube fibers. Carbon, 2013, 59, 65-75.	10.3	44
51	Dynamic fracture toughness of Al–7Si–Mg (A357) aluminum alloy. Mechanics of Materials, 2013, 58, 55-68.	3.2	21
52	Strain Sensing of Glass Fiber Reinforced Coupons by Using Carbon Nanotube Doped Resin. , 2013, , .		0
53	Accelerated corrosion exposure in ultra thin sheets of 2024 aircraft aluminium alloy for GLARE applications. Corrosion Science, 2012, 55, 289-300.	6.6	47
54	Carbon nanotube-based polymer composites: A trade-off between manufacturing cost and mechanical performance. Composites Science and Technology, 2012, 72, 774-787.	7.8	17

#	Article	IF	CITATIONS
55	Assessment of the strain monitoring reliability of fiber Bragg grating sensor (FBGs) in advanced composite structures. Composite Structures, 2011, 93, 2163-2172.	5.8	44
56	Impact mechanical behaviour of Al–7Si–Mg (A357) cast aluminum alloy. The effect of artificial aging. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 6303-6312.	5.6	35
57	Impact properties of the aircraft cast aluminium alloy Al-7Si0.6Mg (A357). EPJ Web of Conferences, 2010, 6, 02002.	0.3	3
58	Structural health monitoring of glass fiber reinforced composites using embedded carbon nanotube (CNT) fibers. Composites Science and Technology, 2010, 70, 260-271.	7.8	192
59	Damage detection of glass fiber reinforced composites using embedded PVA–carbon nanotube (CNT) fibers. Composites Science and Technology, 2010, 70, 1733-1741.	7.8	56
60	Real time sensing of structural glass fiber reinforced composites by using embedded PVA - carbon nanotube fibers. EPJ Web of Conferences, 2010, 6, 20003.	0.3	2
61	Prediction of Aircraft Aluminum Alloys Tensile Mechanical Properties Degradation Using Support Vector Machines. Lecture Notes in Computer Science, 2010, , 9-18.	1.3	3
62	On the ductility potential of cast Al–Cu–Mg (206) alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 506, 23-26.	5.6	35
63	Relationship between Fracture Toughness and Tensile Properties of A357 Cast Aluminum Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 702-716.	2.2	35
64	On the Ductility of Cast Al-7ÂPct Si-Mg Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 1000-1007.	2.2	65
65	Quality Indices for Aluminum Alloy Castings: A Critical Review. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2009, 40, 802-811.	2.1	75
66	On the uniform elongation of cast Al–7%Si–0.6%Mg (A357) alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 507, 236-240.	5.6	20
67	On the corrosion-induced mechanical degradation for different artificial aging conditions of 2024 aluminum alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 520, 40-48.	5.6	26
68	Experimental and theoretical studies of corrosion-induced mechanical properties degradation of aircraft 2024 aluminum alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 498, 248-257.	5.6	59
69	The Effect of Artificial Aging on Tensile Work Hardening Characteristics of a Cast Al-7ÂPct Si-0.55ÂPct Mg (A357) Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2008, 39, 2772-2780.	2.2	23
70	Assessment of the ability of conventional and advanced wrought aluminum alloys for mechanical performance in light-weight applications. Materials & Design, 2008, 29, 80-91.	5.1	43
71	Mechanical Performance Evaluation of Cast Magnesium Alloys for Automotive and Aeronautical Applications. Journal of Engineering Materials and Technology, Transactions of the ASME, 2007, 129, 422-430.	1.4	24
72	Mechanical performance of BStIV grade steel bars with regard to the long-term material degradation due to corrosion damage. Construction and Building Materials, 2007, 21, 1362-1369.	7.2	17

#	Article	IF	CITATIONS
73	Generation of quality maps to support material selection by exploiting the quality indices concept of cast aluminum alloys. Materials & Design, 2007, 28, 534-543.	5.1	35
74	Effect of salt spray corrosion exposure on the mechanical performance of different technical class reinforcing steel bars. Materials & Design, 2007, 28, 2318-2328.	5.1	37
75	Low-alloy TRIP Steels: Evaluation of the Mechanical Performance with regard to Material Design Requirements in the Automotive Industry. Steel Research International, 2006, 77, 129-138.	1.8	15
76	Definition of Quality in Cast Aluminum Alloys and Its Characterization with Appropriate Indices. Journal of Materials Engineering and Performance, 2006, 15, 59-66.	2.5	23
77	Quality evaluation of A357 cast aluminum alloy specimens subjected to different artificial aging treatment. Materials & Design, 2004, 25, 419-430.	5.1	84
78	Quality assessment of artificially aged A357 aluminum alloy cast ingots by introducing approximate expressions of the quality index Q D. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 3079-3089.	2.2	30
79	A new quality index for characterizing aluminum cast alloys with regard to aircraft structure design requirements. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 301-308.	2.2	38
80	Evaluation of the Effects of Variations in Chemical Composition on the Quality of Al-Si-Mg, Al-Cu, and Al-Zn-Mg Cast Aluminum Alloys. Journal of Materials Engineering and Performance, 2003, 12, 196-205.	2.5	20