Ulla Pirvola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/136529/publications.pdf

Version: 2024-02-01

		236925	3	377865	
35	4,519	25		34	
papers	citations	h-index		g-index	
35	35	35		3993	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	The K+/Clâ^' co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature, 1999, 397, 251-255.	27.8	1,892
2	Rescue of Hearing, Auditory Hair Cells, and Neurons by CEP-1347/KT7515, an Inhibitor of c-Jun N-Terminal Kinase Activation. Journal of Neuroscience, 2000, 20, 43-50.	3.6	304
3	FGFR1 Is Required for the Development of the Auditory Sensory Epithelium. Neuron, 2002, 35, 671-680.	8.1	266
4	Expression and function of FGF10 in mammalian inner ear development. Developmental Dynamics, 2003, 227, 203-215.	1.8	214
5	FGF/FGFR-2(IIIb) Signaling Is Essential for Inner Ear Morphogenesis. Journal of Neuroscience, 2000, 20, 6125-6134.	3.6	210
6	Coordinated expression and function of neurotrophins and their receptors in the rat inner ear during target innervation. Hearing Research, 1994, 75, 131-144.	2.0	201
7	Making and breaking the innervation of the ear: neurotrophic support during ear development and its clinical implications. Cell and Tissue Research, 1999, 295, 369-382.	2.9	165
8	The retinoblastoma gene pathway regulates the postmitotic state of hair cells of the mouse inner ear. Development (Cambridge), 2005, 132, 2377-2388.	2.5	121
9	Brn3c null mutant mice show long-term, incomplete retention of some afferent inner ear innervation. BMC Neuroscience, 2003, 4, 2.	1.9	103
10	Blockade of c-Jun N-terminal kinase pathway attenuates gentamicin-induced cochlear and vestibular hair cell death. Hearing Research, 2002, 163, 71-81.	2.0	94
11	Cell cycle regulation in the inner ear sensory epithelia: Role of cyclin D1 and cyclin-dependent kinase inhibitors. Developmental Biology, 2010, 337, 134-146.	2.0	93
12	p19Ink4d and p21Cip1 Collaborate to Maintain the Postmitotic State of Auditory Hair Cells, Their Codeletion Leading to DNA Damage and p53-Mediated Apoptosis. Journal of Neuroscience, 2007, 27, 1434-1444.	3.6	92
13	Transcutaneous vagus nerve stimulation in tinnitus: a pilot study. Acta Oto-Laryngologica, 2013, 133, 378-382.	0.9	92
14	Fgf9 signaling regulates inner ear morphogenesis through epithelial–mesenchymal interactions. Developmental Biology, 2004, 273, 350-360.	2.0	78
15	Expression of neurotrophins and Trk receptors in the developing, adult, and regenerating avian cochlea. Journal of Neurobiology, 1997, 33, 1019-1033.	3.6	68
16	Prox1 interacts with Atoh1 and Gfi1, and regulates cellular differentiation in the inner ear sensory epithelia. Developmental Biology, 2008, 322, 33-45.	2.0	60
17	How to Bury the Dead: Elimination of Apoptotic Hair Cells from the Hearing Organ of the Mouse. JARO - Journal of the Association for Research in Otolaryngology, 2014, 15, 975-992.	1.8	58
18	Non-invasive vagus nerve stimulation reduces sympathetic preponderance in patients with tinnitus. Acta Oto-Laryngologica, 2017, 137, 426-431.	0.9	49

#	Article	IF	CITATIONS
19	The Rho GTPase Cdc42 regulates hair cell planar polarity and cellular patterning in the developing cochlea. Biology Open, 2015, 4, 516-526.	1.2	46
20	Neurotrophic Factors in the Auditory Periphery. Annals of the New York Academy of Sciences, 1999, 884, 292-304.	3.8	41
21	Deficiency of the ER-stress-regulator MANF triggers progressive outer hair cell death and hearing loss. Cell Death and Disease, 2020, 11, 100.	6.3	37
22	Cdc42-dependent structural development of auditory supporting cells is required for wound healing at adulthood. Scientific Reports, 2012, 2, 978.	3.3	32
23	Restrictions in Cell Cycle Progression of Adult Vestibular Supporting Cells in Response to Ectopic Cyclin D1 Expression. PLoS ONE, 2011, 6, e27360.	2.5	31
24	Distribution of F-actin and fodrin in the hair cells of the guinea pig cochlea as revealed by confocal fluorescence microscopy. Hearing Research, 1992, 60, 80-88.	2.0	29
25	Neurotrophic Factors during Inner Ear Development. Current Topics in Developmental Biology, 2003, 57, 207-223.	2.2	27
26	Coupling the cell cycle to development and regeneration of the inner ear. Seminars in Cell and Developmental Biology, 2013, 24, 507-513.	5.0	22
27	The Stress Response in the Non-sensory Cells of the Cochlea Under Pathological Conditions—Possible Role in Mediating Noise Vulnerability. JARO - Journal of the Association for Research in Otolaryngology, 2018, 19, 637-652.	1.8	18
28	Differential sensitivity of the inner ear sensory cell populations to forced cell cycle reâ€entry and p53 induction. Journal of Neurochemistry, 2010, 112, 1513-1526.	3.9	16
29	c-Jun N-Terminal Phosphorylation: Biomarker for Cellular Stress Rather than Cell Death in the Injured Cochlea. ENeuro, 2016, 3, ENEURO.0047-16.2016.	1.9	16
30	Stress and Tinnitus; Transcutaneous Auricular Vagal Nerve Stimulation Attenuates Tinnitus-Triggered Stress Reaction. Frontiers in Psychology, 2020, 11, 570196.	2.1	13
31	DNA damage signaling regulates age-dependent proliferative capacity of quiescent inner ear supporting cells. Aging, 2014, 6, 496-510.	3.1	10
32	Hearing disorder from music; a neglected dysfunction. Acta Oto-Laryngologica, 2018, 138, 21-24.	0.9	9
33	Cytoskeletal Stability in the Auditory Organ <i>In Vivo</i> : RhoA Is Dispensable for Wound Healing but Essential for Hair Cell Development. ENeuro, 2017, 4, ENEURO.0149-17.2017.	1.9	9
34	MANF supports the inner hair cell synapse and the outer hair cell stereocilia bundle in the cochlea. Life Science Alliance, 2022, 5, e202101068.	2.8	3
35	Rescue and restoration of inner ear function: are growth factors useful?. Audiological Medicine, 2004, 2, 193-198.	0.4	0