Thomas A J Kuhlbusch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1364080/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The potential risks of nanomaterials: a review carried out for ECETOC. Particle and Fibre Toxicology, 2006, 3, 11.	2.8	1,067
2	Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe – The ESCAPE project. Atmospheric Environment, 2013, 72, 10-23.	1.9	719
3	Spatial variation of PM2.5, PM10, PM2.5 absorbance and PMcoarse concentrations between and within 20 European study areas and the relationship with NO2 – Results of the ESCAPE project. Atmospheric Environment, 2012, 62, 303-317.	1.9	392
4	Fate and Bioavailability of Engineered Nanoparticles in Soils: A Review. Critical Reviews in Environmental Science and Technology, 2014, 44, 2720-2764.	6.6	354
5	Nanoparticle exposure at nanotechnology workplaces: A review. Particle and Fibre Toxicology, 2011, 8, 22.	2.8	341
6	Nanomaterials Versus Ambient Ultrafine Particles: An Opportunity to Exchange Toxicology Knowledge. Environmental Health Perspectives, 2017, 125, 106002.	2.8	274
7	Comparative analysis of black carbon in soils. Global Biogeochemical Cycles, 2001, 15, 163-167.	1.9	267
8	Oxidative potential of particulate matter collected at sites with different source characteristics. Science of the Total Environment, 2014, 472, 572-581.	3.9	228
9	A Review of the Properties and Processes Determining the Fate of Engineered Nanomaterials in the Aquatic Environment. Critical Reviews in Environmental Science and Technology, 2015, 45, 2084-2134.	6.6	172
10	Hydroxyl radical generation by electron paramagnetic resonance as a new method to monitor ambient particulate matter composition. Journal of Environmental Monitoring, 2003, 5, 550.	2.1	166
11	Association of ambient air pollution with the prevalence and incidence of COPD. European Respiratory Journal, 2014, 44, 614-626.	3.1	163
12	Measurement of the oxidative potential of PM2.5 and its constituents: The effect of extraction solvent and filter type. Atmospheric Environment, 2014, 83, 35-42.	1.9	147
13	Number Size Distribution, Mass Concentration, and Particle Composition of PM1, PM2.5, and PM10in Bag Filling Areas of Carbon Black Production. Journal of Occupational and Environmental Hygiene, 2004, 1, 660-671.	0.4	137
14	Comparison of four mobility particle sizers with different time resolution for stationary exposure measurements. Journal of Nanoparticle Research, 2009, 11, 1593-1609.	0.8	131
15	Conceptual limitations and extensions of lung-deposited Nanoparticle Surface Area Monitor (NSAM). Journal of Nanoparticle Research, 2009, 11, 101-109.	0.8	119
16	A multicentre study of air pollution exposure and childhood asthma prevalence: the ESCAPE project. European Respiratory Journal, 2015, 45, 610-624.	3.1	119
17	Predicting long-term average concentrations of traffic-related air pollutants using GIS-based information. Atmospheric Environment, 2006, 40, 542-553.	1.9	112
18	Zinc Oxide Nanoparticles Induce Necrosis and Apoptosis in Macrophages in a p47phox- and Nrf2-Independent Manner. PLoS ONE, 2013, 8, e65704.	1,1	111

THOMAS A J KUHLBUSCH

#	Article	IF	CITATIONS
19	Airborne engineered nanomaterials in the workplace—a review of release and worker exposure during nanomaterial production and handling processes. Journal of Hazardous Materials, 2017, 322, 17-28.	6.5	108
20	Associations between three specific a-cellular measures of the oxidative potential of particulate matter and markers of acute airway and nasal inflammation in healthy volunteers. Occupational and Environmental Medicine, 2015, 72, 49-56.	1.3	105
21	Comparability of mobility particle sizers and diffusion chargers. Journal of Aerosol Science, 2013, 57, 156-178.	1.8	98
22	Eczema, respiratory allergies, and traffic-related air pollution in birth cohorts from small-town areas. Journal of Dermatological Science, 2009, 56, 99-105.	1.0	97
23	Particle Characteristics in the Reactor and Pelletizing Areas of Carbon Black Production. Journal of Occupational and Environmental Hygiene, 2006, 3, 558-567.	0.4	77
24	In vivo effects: Methodologies and biokinetics of inhaled nanomaterials. NanoImpact, 2018, 10, 38-60.	2.4	75
25	How can nanobiotechnology oversight advance science and industry: examples from environmental, health, and safety studies of nanoparticles (nano-EHS). Journal of Nanoparticle Research, 2011, 13, 1373-1387.	0.8	68
26	Nanoparticle release from dental composites. Acta Biomaterialia, 2014, 10, 365-374.	4.1	68
27	Nanomaterial exposures for worker, consumer and the general public. NanoImpact, 2018, 10, 11-25.	2.4	68
28	Air Pollution and Nonmalignant Respiratory Mortality in 16 Cohorts within the ESCAPE Project. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 684-696.	2.5	63
29	Long-term observations of tropospheric particle number size distributions and equivalent black carbon mass concentrations in the German Ultrafine Aerosol Network (GUAN). Earth System Science Data, 2016, 8, 355-382.	3.7	63
30	Comparability of Portable Nanoparticle ExposureÂMonitors <xref <br="" ref-type="corresp">rid="c1">[*]</xref> <xref ref-type="corresp" rid="c2"></xref> . Annals of Occupational Hygiene, 2012, 56, 606-21.	1.9	59
31	Elemental Composition of Particulate Matter and the Association with Lung Function. Epidemiology, 2014, 25, 648-657.	1.2	59
32	Influence of agglomeration and specific lung lining lipid/protein interaction on short-term inhalation toxicity. Nanotoxicology, 2016, 10, 970-980.	1.6	55
33	Ultrafine and Fine Particle Number and Surface Area Concentrations and Daily Cause-Specific Mortality in the Ruhr Area, Germany, 2009–2014. Environmental Health Perspectives, 2018, 126, 027008.	2.8	54
34	Analytical methods to assess the oxidative potential of nanoparticles: a review. Environmental Science: Nano, 2017, 4, 1920-1934.	2.2	53
35	Proteomic analysis of protein carbonylation: a useful tool to unravel nanoparticle toxicity mechanisms. Particle and Fibre Toxicology, 2015, 12, 36.	2.8	49
36	Comparison of Micro- and Nanoscale Fe+3–Containing (Hematite) Particles for Their Toxicological Properties in Human Lung Cells In Vitro. Toxicological Sciences, 2012, 126, 173-182.	1.4	47

THOMAS A J KUHLBUSCH

#	Article	IF	CITATIONS
37	Emissions and Possible Environmental Implication of Engineered Nanomaterials (ENMs) in the Atmosphere. Atmosphere, 2017, 8, 84.	1.0	46
38	Release from nanomaterials during their use phase: combined mechanical and chemical stresses applied to simple and multi-filler nanocomposites mimicking wear of nano-reinforced tires. Environmental Science: Nano, 2016, 3, 1036-1051.	2.2	38
39	The nanoGRAVUR framework to group (nano)materials for their occupational, consumer, environmental risks based on a harmonized set of material properties, applied to 34 case studies. Nanoscale, 2019, 11, 17637-17654.	2.8	38
40	Dynamic light-scattering measurement comparability of nanomaterial suspensions. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	37
41	Behavior of nanoscale titanium dioxide in laboratory wastewater treatment plants according to OECD 303 A. Chemosphere, 2014, 104, 197-204.	4.2	36
42	Intrinsic hydroxyl radical generation measurements directly from sampled filters as a metric for the oxidative potential of ambient particulate matter. Journal of Aerosol Science, 2014, 72, 47-55.	1.8	36
43	Temporal and spatial variation of the metal-related oxidative potential of PM 2.5 and its relation to PM 2.5 mass and elemental composition. Atmospheric Environment, 2015, 102, 62-69.	1.9	34
44	Respiratory Effects of Fine and Ultrafine Particles from Indoor Sources—A Randomized Sham-Controlled Exposure Study of Healthy Volunteers. International Journal of Environmental Research and Public Health, 2014, 11, 6871-6889.	1.2	30
45	Comparison of Land-Use Regression Modeling with Dispersion and Chemistry Transport Modeling to Assign Air Pollution Concentrations within the Ruhr Area. Atmosphere, 2016, 7, 48.	1.0	30
46	Size matters – The phototoxicity of TiO2 nanomaterials. Environmental Pollution, 2016, 208, 859-867.	3.7	30
47	Investigation of airborne nanopowder agglomerate stability in an orifice under various differential pressure conditions. Journal of Nanoparticle Research, 2009, 11, 1625-1635.	0.8	29
48	Towards a Consensus View on Understanding Nanomaterials Hazards and Managing Exposure: Knowledge Gaps and Recommendations. Materials, 2013, 6, 1090-1117.	1.3	28
49	Exposure to ultrafine particles and respiratory hospitalisations in five European cities. European Respiratory Journal, 2016, 48, 674-682.	3.1	28
50	Optimisation of a thermophoretic personal sampler for nanoparticle exposure studies. Journal of Nanoparticle Research, 2009, 11, 1611-1624.	0.8	27
51	Internal Exposure, Effect Monitoring, and Lung Function in Welders After Acute Short-Term Exposure to Welding Fumes From Different Welding Processes. Journal of Occupational and Environmental Medicine, 2010, 52, 887-892.	0.9	27
52	Sources, determination, monitoring, and transport of carbonaceous aerosols in Mainz, Germany. Atmospheric Environment, 1998, 32, 1097-1110.	1.9	25
53	Size Resolved Particle Number Emission Factors of Motorway Traffic Differentiated between Heavy and Light Duty Vehicles. Aerosol and Air Quality Research, 2013, 13, 450-461.	0.9	25
54	Measurements of Nanoscale TiO2 and Al2O3 in Industrial Workplace Environments - Methodology and Results. Aerosol and Air Quality Research, 2015, 15, 129-141.	0.9	25

THOMAS A J KUHLBUSCH

#	Article	IF	CITATIONS
55	Quality considerations of European PM emission inventories. Atmospheric Environment, 2009, 43, 3819-3828.	1.9	24
56	Emission measurement and safety assessment for the production process of silicon nanoparticles in a pilot-scale facility. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	24
57	Arterial blood pressure responses to short-term exposure to fine and ultrafine particles from indoor sources – A randomized sham-controlled exposure study of healthy volunteers. Environmental Research, 2017, 158, 225-232.	3.7	24
58	Design and experimental evaluation of a new nanoparticle thermophoretic personal sampler. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	21
59	Sources and source contributions to fine particles. Biomarkers, 2009, 14, 23-28.	0.9	19
60	Mathematical Description of Experimentally Determined Charge Distributions of a Unipolar Diffusion Charger. Aerosol Science and Technology, 2012, 46, 708-716.	1.5	19
61	New Directions: The future of European urban air quality monitoring. Atmospheric Environment, 2014, 87, 258-260.	1.9	19
62	A Low Pressure Drop Preseparator for Elimination of Particles Larger than 450 nm. Aerosol and Air Quality Research, 2011, 11, 487-496.	0.9	18
63	A redox proteomics approach to investigate the mode of action of nanomaterials. Toxicology and Applied Pharmacology, 2016, 299, 24-29.	1.3	17
64	Elemental composition and radical formation potency of PM10 at an urban background station in Germany in relation to origin of air masses. Atmospheric Environment, 2015, 105, 1-6.	1.9	16
65	Oxidative potential of particulate matter at a German motorway. Environmental Sciences: Processes and Impacts, 2015, 17, 868-876.	1.7	15
66	Standardisation of a European measurement method for organic carbon and elemental carbon in ambient air: results of the field trial campaign and the determination of a measurement uncertainty and working range. Environmental Sciences: Processes and Impacts, 2017, 19, 1249-1259.	1.7	15
67	Effects of short-term exposure to fine and ultrafine particles from indoor sources on arterial stiffness – A randomized sham-controlled exposure study. International Journal of Hygiene and Environmental Health, 2019, 222, 1115-1132.	2.1	15
68	Development of an Electrostatic Partitioner for Highly Efficient Partitioning of Gas and Particles with Minimal Effect on the Gas Phase. Aerosol Science and Technology, 2004, 38, 322-329.	1.5	14
69	Mobility of coated and uncoated TiO2 nanomaterials in soil columns – Applicability of the tests methods of OECD TG 312 and 106 for nanomaterials. Journal of Environmental Management, 2015, 157, 230-237.	3.8	13
70	Land use regression modeling of oxidative potential of fine particles, NO2, PM2.5 mass and association to type two diabetes mellitus. Atmospheric Environment, 2017, 171, 181-190.	1.9	13
71	Contributions of carbonaceous particles from fossil emissions and biomass burning to PM10 in the Ruhr area, Germany. Atmospheric Environment, 2018, 189, 174-186.	1.9	13
72	Dustiness and Deagglomeration Testing: Interlaboratory Comparison of Systems for Nanoparticle Powders. Aerosol Science and Technology, 2015, 49, 1222-1231.	1.5	12

Thomas A J Kuhlbusch

#	Article	IF	CITATIONS
73	Carbon monoxide fluxes of different soil layers in upland Canadian boreal forests. Tellus, Series B: Chemical and Physical Meteorology, 1998, 50, 353-365.	0.8	10
74	Total Surface Area Concentration Measurements of Nanoparticles in Gases with an Electrical Sensor. Chemie-Ingenieur-Technik, 2012, 84, 365-372.	0.4	10
75	Deagglomeration testing of airborne nanoparticle agglomerates: Stability analysis under varied aerodynamic shear and relative humidity conditions. Aerosol Science and Technology, 2016, 50, 1253-1263.	1.5	10
76	Agreement of central site measurements and land use regression modeled oxidative potential of PM2.5 with personal exposure. Environmental Research, 2015, 140, 397-404.	3.7	9
77	Development of a PM 10/PM 2.5 Cascade Impactor and In-Stack Measurements. Aerosol Science and Technology, 2003, 37, 694-702.	1.5	8
78	Effect of corona discharge on the gas composition of the sample flow in a Gas Particle Partitioner. Journal of Environmental Monitoring, 2005, 7, 877.	2.1	8
79	Model for the combination of diffusional and inertial particle deposition on inverse surfaces at low pressure. Applied Physics Letters, 2008, 93, 054104.	1.5	7
80	Analytical-statistical model to accurately estimate diffusional nanoparticle deposition on inverted surfaces at low pressure. Applied Physics Letters, 2008, 92, 064107.	1.5	6
81	Carbon trace gases in lake and beaver pond ice near Thompson, Manitoba, Canada. Journal of Geophysical Research, 1999, 104, 27693-27698.	3.3	5
82	Correlation studies of particle characteristics and trace gas concentrations at a traffic site in Düsseldorf, Germany. Journal of Aerosol Science, 2000, 31, 562-563.	1.8	3
83	Air Pollution Monitoring Strategies and Technologies for Urban Areas. Handbook of Environmental Chemistry, 2013, , 277-296.	0.2	3
84	Examples and Case Studies. , 2014, , 223-278.		3
85	From Source to Dose. , 2014, , 135-171.		3
86	Thermodynamic influences on size fractionated measurements (PM 2.5, PM 10) of ambient aerosols. Journal of Environmental Monitoring, 1999, 1, 409-412.	2.1	2
87	Editorial by the guest editors. BioNanoMaterials, 2013, 14, 3.	1.4	1
88	Firewood residential heating – local versus remote influence on the aerosol burden. Atmospheric Chemistry and Physics, 2021, 21, 5953-5964.	1.9	1
89	Nanoparticle contamination control for EUVL-technology: especially for photomasks in carriers and scanners. Proceedings of SPIE, 2009, , .	0.8	0