Jun Ni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1363923/publications.pdf

Version: 2024-02-01

17	446	840776 11	888059
papers	citations	h-index	g-index
22	22	22	535
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Non-full-length Water-Soluble CXCR4QTY and CCR5QTY Chemokine Receptors: Implication for Overlooked Truncated but Functional Membrane Receptors. IScience, 2020, 23, 101670.	4.1	16
2	Steps Toward Highâ€Performance PLA: Economical Production of <scp>d</scp> â€Lactate Enabled by a Newly Isolated <i>Sporolactobacillus terrae</i> Strain. Biotechnology Journal, 2019, 14, e1800656.	3.5	17
3	Titelbild: Temperatureâ€Directed Biocatalysis for the Sustainable Production of Aromatic Aldehydes or Alcohols (Angew. Chem. 5/2018). Angewandte Chemie, 2018, 130, 1133-1133.	2.0	O
4	Temperatureâ€Directed Biocatalysis for the Sustainable Production of Aromatic Aldehydes or Alcohols. Angewandte Chemie - International Edition, 2018, 57, 1214-1217.	13.8	43
5	Temperatureâ€Directed Biocatalysis for the Sustainable Production of Aromatic Aldehydes or Alcohols. Angewandte Chemie, 2018, 130, 1228-1231.	2.0	7
6	Innenrücktitelbild: Remodeling of the Photosynthetic Chain Promotes Direct CO ₂ Conversion into Valuable Aromatic Compounds (Angew. Chem. 49/2018). Angewandte Chemie, 2018, 130, 16469-16469.	2.0	1
7	Enhancing Light-Driven 1,3-Propanediol Production by Using Natural Compartmentalization of Differentiated Cells. ACS Synthetic Biology, 2018, 7, 2436-2446.	3.8	14
8	Remodeling of the Photosynthetic Chain Promotes Direct CO2Conversion into Valuable Aromatic Compounds. Angewandte Chemie, 2018, 130, 16222-16226.	2.0	6
9	Remodeling of the Photosynthetic Chain Promotes Direct CO ₂ Conversion into Valuable Aromatic Compounds. Angewandte Chemie - International Edition, 2018, 57, 15990-15994.	13.8	25
10	A Coenzyme-Free Biocatalyst for the Value-Added Utilization of Lignin-Derived Aromatics. Journal of the American Chemical Society, 2018, 140, 16001-16005.	13.7	63
11	Engineering Cyanobacteria for Photosynthetic Production of C3 Platform Chemicals and Terpenoids from CO2. Advances in Experimental Medicine and Biology, 2018, 1080, 239-259.	1.6	6
12	A photoautotrophic platform for the sustainable production of valuable plant natural products from CO ₂ . Green Chemistry, 2016, 18, 3537-3548.	9.0	26
13	Mimicking a natural pathway for de novo biosynthesis: natural vanillin production from accessible carbon sources. Scientific Reports, 2015, 5, 13670.	3.3	74
14	Enhancing the light-driven production of d-lactate by engineering cyanobacterium using a combinational strategy. Scientific Reports, 2015, 5, 9777.	3.3	49
15	Production of C3 platform chemicals from CO ₂ by genetically engineered cyanobacteria. Green Chemistry, 2015, 17, 3100-3110.	9.0	46
16	Genome Sequence of Sporolactobacillus terrae DSM 11697, the Type Strain of the Species. Genome Announcements, $2014, 2, \ldots$	0.8	4
17	Characterization of Two Streptomyces Enzymes That Convert Ferulic Acid to Vanillin. PLoS ONE, 2013, 8, e67339.	2.5	48