
Joel A Haber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1363908/publications.pdf Version: 2024-02-01

LOFI & HARED

#	Article	IF	CITATIONS
1	Discovering Ce-rich oxygen evolution catalysts, from high throughput screening to water electrolysis. Energy and Environmental Science, 2014, 7, 682-688.	30.8	165
2	An Operando Investigation of (Ni–Fe–Co–Ce)O _{<i>x</i>} System as Highly Efficient Electrocatalyst for Oxygen Evolution Reaction. ACS Catalysis, 2017, 7, 1248-1258.	11.2	156
3	Analysis of the limitations in the oxygen reduction activity of transition metal oxide surfaces. Nature Catalysis, 2021, 4, 463-468.	34.4	156
4	Rutile Alloys in the Mn–Sb–O System Stabilize Mn ³⁺ To Enable Oxygen Evolution in Strong Acid. ACS Catalysis, 2018, 8, 10938-10948.	11.2	97
5	One-Step Synthesis and Optical and Electrical Properties of Thin Film Cu3BiS3 for Use as a Solar Absorber in Photovoltaic Devices. Chemistry of Materials, 2006, 18, 6297-6302.	6.7	95
6	Multiphase Nanostructure of a Quinary Metal Oxide Electrocatalyst Reveals a New Direction for OER Electrocatalyst Design. Advanced Energy Materials, 2015, 5, 1402307.	19.5	85
7	Benchmarking the acceleration of materials discovery by sequential learning. Chemical Science, 2020, 11, 2696-2706.	7.4	83
8	High Throughput Discovery of Solar Fuels Photoanodes in the CuO–V ₂ O ₅ System. Advanced Energy Materials, 2015, 5, 1500968.	19.5	82
9	Highâ€Throughput Mapping of the Electrochemical Properties of (Niâ€Feâ€Coâ€Ce)O _{<i>x</i>} Oxygenâ€Evolution Catalysts. ChemElectroChem, 2014, 1, 524-528.	3.4	71
10	Multigram synthesis of copper nanowires using ac electrodeposition into porous aluminium oxide templates. Journal of Materials Chemistry, 2006, 16, 3075.	6.7	69
11	Development of solar fuels photoanodes through combinatorial integration of Ni–La–Co–Ce oxide catalysts on BiVO ₄ . Energy and Environmental Science, 2016, 9, 565-580.	30.8	61
12	High-Throughput Screening for Acid-Stable Oxygen Evolution Electrocatalysts in the (Mn–Co–Ta–Sb)O x Composition Space. Electrocatalysis, 2015, 6, 229-236.	3.0	53
13	Electrostatically Dissipative Polystyrene Nanocomposites containing Copper Nanowires. Macromolecular Rapid Communications, 2005, 26, 1677-1681.	3.9	48
14	Synthesis of Cu3BiS3 Thin Films by Heating Metal and Metal Sulfide Precursor Films under Hydrogen Sulfide. Chemistry of Materials, 2006, 18, 6289-6296.	6.7	37
15	Discovery of Fe–Ce Oxide/BiVO ₄ Photoanodes through Combinatorial Exploration of Ni–Fe–Co–Ce Oxide Coatings. ACS Applied Materials & Interfaces, 2016, 8, 23696-23705.	8.0	35
16	Successes and Opportunities for Discovery of Metal Oxide Photoanodes for Solar Fuels Generators. ACS Energy Letters, 2020, 5, 1413-1421.	17.4	30
17	Discovery of New Oxygen Evolution Reaction Electrocatalysts by Combinatorial Investigation of the Ni–La–Co–Ce Oxide Composition Space. ChemElectroChem, 2014, 1, 1613-1617.	3.4	29
18	Interface engineering for light-driven water oxidation: unravelling the passivating and catalytic mechanism in BiVO ₄ overlayers. Sustainable Energy and Fuels, 2019, 3, 127-135.	4.9	28

JOEL A HABER

#	Article	IF	CITATIONS
19	Fermi Level Engineering of Passivation and Electron Transport Materials for pâ€Type CuBi 2 O 4 Employing a Highâ€Throughput Methodology. Advanced Functional Materials, 2020, 30, 2000948.	14.9	28
20	Functional mapping reveals mechanistic clusters for OER catalysis across (Cu–Mn–Ta–Co–Sn–Fe)O _x composition and pH space. Materials Horizons, 2019, 6, 1251	-1258.	22
21	Combinatorial alloying improves bismuth vanadate photoanodes <i>via</i> reduced monoclinic distortion. Energy and Environmental Science, 2018, 11, 2444-2457.	30.8	21
22	Discovery of complex oxides via automated experiments and data science. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	21
23	Stability and Activity of Cobalt Antimonate for Oxygen Reduction in Strong Acid. ACS Energy Letters, 2022, 7, 993-1000.	17.4	21
24	The role of the CeO ₂ /BiVO ₄ interface in optimized Fe–Ce oxide coatings for solar fuels photoanodes. Journal of Materials Chemistry A, 2016, 4, 14356-14363.	10.3	19
25	Overcoming Hurdles in Oxygen Evolution Catalyst Discovery via Codesign. Chemistry of Materials, 2022, 34, 899-910.	6.7	17
26	Quaternary Oxide Photoanode Discovery Improves the Spectral Response and Photovoltage of Copper Vanadates. Matter, 2020, 3, 1614-1630.	10.0	16
27	Multi-modal optimization of bismuth vanadate photoanodes <i>via</i> combinatorial alloying and hydrogen processing. Chemical Communications, 2019, 55, 489-492.	4.1	15
28	Colorimetric Screening for High-Throughput Discovery of Light Absorbers. ACS Combinatorial Science, 2015, 17, 176-181.	3.8	12
29	Parallel Electrochemical Treatment System and Application for Identifying Acid-Stable Oxygen Evolution Electrocatalysts. ACS Combinatorial Science, 2015, 17, 71-75.	3.8	12
30	Enhanced Bulk Transport in Copper Vanadate Photoanodes Identified by Combinatorial Alloying. Matter, 2020, 3, 1601-1613.	10.0	8
31	High Throughput Discovery of Complex Metal Oxide Electrocatalysts for the Oxygen Reduction Reaction. Electrocatalysis, 2022, 13, 1-10.	3.0	7
32	Molecular Coatings Improve the Selectivity and Durability of CO ₂ Reduction Chalcogenide Photocathodes. ACS Energy Letters, 2022, 7, 1195-1201.	17.4	6
33	Bi Alloying into Rare Earth Double Perovskites Enhances Synthesizability and Visible Light Absorption. ACS Combinatorial Science, 2020, 22, 895-901.	3.8	5
34	Balancing Surface Passivation and Catalysis with Integrated BiVO4/(Fe–Ce)Ox Photoanodes in pH 9 Borate Electrolyte. ACS Applied Energy Materials, 2018, , .	5.1	2
35	Combinatorial Synthesis of Oxysulfides in the Lanthanum–Bismuth-Copper System. ACS Combinatorial Science, 2020, 22, 319-326.	3.8	1
36	AC Electrodeposition of Uniform High Aspect-Ratio Metal Nanowires in Porous Aluminum Oxide Templates. Materials Research Society Symposia Proceedings, 2005, 879, 1.	0.1	0

#	Article	IF	CITATIONS
37	Physical Vapor Deposition Synthesis of Cu3BiS3 for Application in Thin Film Photovoltaics. Materials Research Society Symposia Proceedings, 2005, 865, 521.	0.1	Ο
38	Preparation of Copper Nanowire/Polymer Nanocomposites by Melt Mixing. Materials Research Society Symposia Proceedings, 2005, 879, 1.	0.1	0