Sarah L Waters

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/136371/publications.pdf Version: 2024-02-01

SADAH | WATEDS

#	Article	IF	CITATIONS
1	Mathematical modelling of autoimmune myocarditis and the effects of immune checkpoint inhibitors. Journal of Theoretical Biology, 2022, 537, 111002.	1.7	6
2	A kinetic model of a polyelectrolyte gel undergoing phase separation. Journal of the Mechanics and Physics of Solids, 2022, 160, 104771.	4.8	10
3	A Mathematical Model of a Valve-Controlled Bioreactor for Platelet Production. Frontiers in Mechanical Engineering, 2022, 8, .	1.8	0
4	Experimental and mathematical modelling of magnetically labelled mesenchymal stromal cell delivery. Journal of the Royal Society Interface, 2021, 18, 20200558.	3.4	3
5	Shape optimisation for faster washout in recirculating flows. Journal of Fluid Mechanics, 2021, 914, .	3.4	4
6	Fluid mechanical modeling of the upper urinary tract. WIREs Mechanisms of Disease, 2021, 13, e1523.	3.3	18
7	Regenerative medicine meets mathematical modelling: developing symbiotic relationships. Npj Regenerative Medicine, 2021, 6, 24.	5.2	31
8	A Systematically Reduced Mathematical Model for Organoid Expansion. Frontiers in Bioengineering and Biotechnology, 2021, 9, 670186.	4.1	7
9	Multiscale modelling and homogenisation of fibre-reinforced hydrogels for tissue engineering. European Journal of Applied Mathematics, 2020, 31, 143-171.	2.9	25
10	A lumped-parameter model for kidney pressure during stone removal. IMA Journal of Applied Mathematics, 2020, 85, 703-723.	1.6	2
11	Cavity flow characteristics and applications to kidney stone removal. Journal of Fluid Mechanics, 2020, 902, .	3.4	8
12	Mathematical modelling reveals cellular dynamics within tumour spheroids. PLoS Computational Biology, 2020, 16, e1007961.	3.2	56
13	Combining multiple spatial statistics enhances the description of immune cell localisation within tumours. Scientific Reports, 2020, 10, 18624.	3.3	20
14	Predicting Bone Formation in Mesenchymal Stromal Cell-Seeded Hydrogels Using Experiment-Based Mathematical Modeling. Tissue Engineering - Part A, 2020, 26, 1014-1023.	3.1	3
15	Effects of geometry on resistance in elliptical pipe flows. Journal of Fluid Mechanics, 2020, 891, .	3.4	8
16	Lattice and continuum modelling of a bioactive porous tissue scaffold. Mathematical Medicine and Biology, 2019, 36, 325-360.	1.2	3
17	The Fluid Mechanics of Ureteroscope Irrigation. Journal of Endourology, 2019, 33, 28-34.	2.1	20
18	Curvature- and fluid-stress-driven tissue growth in a tissue-engineering scaffold pore. Biomechanics and Modeling in Mechanobiology, 2019, 18, 589-605.	2.8	17

#	Article	IF	CITATIONS
19	The effect of weak inertia in rotating high-aspect-ratio vessel bioreactors. Journal of Fluid Mechanics, 2018, 835, 674-720.	3.4	4
20	Pattern formation in multiphase models of chemotactic cell aggregation. Mathematical Medicine and Biology, 2018, 35, 319-346.	1.2	5
21	Bifurcations and Dynamics Emergent From Lattice and Continuum Models of Bioactive Porous Media. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2018, 28, 1830037.	1.7	1
22	Title is missing!. , 2018, , .		1
23	Mathematical modelling of cell layer growth in a hollow fibre bioreactor. Journal of Theoretical Biology, 2017, 418, 36-56.	1.7	11
24	Axonal Buckling Following Stretch Injury. Journal of Elasticity, 2017, 129, 239-256.	1.9	7
25	On the boundary layer structure near a highly permeable porous interface. Journal of Fluid Mechanics, 2016, 798, 88-139.	3.4	9
26	Mathematical modelling of blood–brain barrier failure and oedema. Mathematical Medicine and Biology, 2016, 34, dqw009.	1.2	7
27	Dispersion-enhanced solute transport in a cell-seeded hollow fibre membrane bioreactor. Journal of Engineering Mathematics, 2016, 99, 29-63.	1.2	5
28	The influence of hydrostatic pressure on tissue engineered bone development. Journal of Theoretical Biology, 2016, 394, 149-159.	1.7	8
29	Wrinkling, creasing, and folding in fiber-reinforced soft tissues. Extreme Mechanics Letters, 2016, 8, 22-29.	4.1	18
30	Approaches to myosin modelling in a two-phase flow model for cell motility. Physica D: Nonlinear Phenomena, 2016, 318-319, 34-49.	2.8	2
31	A multiphase model for chemically- and mechanically- induced cell differentiation in a hollow fibre membrane bioreactor: minimising growth factor consumption. Biomechanics and Modeling in Mechanobiology, 2016, 15, 683-700.	2.8	3
32	Mechanics of the brain: perspectives, challenges, and opportunities. Biomechanics and Modeling in Mechanobiology, 2015, 14, 931-965.	2.8	289
33	Global contraction or local growth, bleb shape depends on more than just cell structure. Journal of Theoretical Biology, 2015, 380, 83-97.	1.7	20
34	Multiphase modelling of the effect of fluid shear stress on cell yield and distribution in a hollow fibre membrane bioreactor. Biomechanics and Modeling in Mechanobiology, 2015, 14, 387-402.	2.8	14
35	Propagation of damage in brain tissue: coupling the mechanics of oedema and oxygen delivery. Biomechanics and Modeling in Mechanobiology, 2015, 14, 1197-1216.	2.8	16
36	On a poroviscoelastic model for cell crawling. Journal of Mathematical Biology, 2015, 70, 133-171.	1.9	9

#	Article	IF	CITATIONS
37	A multiscale analysis of nutrient transport and biological tissue growth <i>in vitro</i> . Mathematical Medicine and Biology, 2015, 32, 345-366.	1.2	33
38	Evaluation of the Growth Environment of a Hydrostatic Force Bioreactor for Preconditioning of Tissue-Engineered Constructs. Tissue Engineering - Part C: Methods, 2015, 21, 1-14.	2.1	27
39	Multiphase modelling of the influence of fluid flow and chemical concentration on tissue growth in a hollow fibre membrane bioreactor. Mathematical Medicine and Biology, 2014, 31, 393-430.	1.2	21
40	The effect of membrane-regulated actin polymerization on a two-phase flow model for cell motility. IMA Journal of Applied Mathematics, 2014, 79, 603-635.	1.6	1
41	Three mechanical models for blebbing and multi-blebbing. IMA Journal of Applied Mathematics, 2014, 79, 636-660.	1.6	15
42	Cellular blebs: pressure-driven, axisymmetric, membrane protrusions. Biomechanics and Modeling in Mechanobiology, 2014, 13, 463-476.	2.8	24
43	Is the Donnan effect sufficient to explain swelling in brain tissue slices?. Journal of the Royal Society Interface, 2014, 11, 20140123.	3.4	41
44	Heat or mass transfer at low Péclet number for Brinkman and Darcy flow round a sphere. International Journal of Heat and Mass Transfer, 2014, 68, 247-258.	4.8	12
45	Optimising Cell Aggregate Expansion in a Perfused Hollow Fibre Bioreactor via Mathematical Modelling. PLoS ONE, 2014, 9, e105813.	2.5	19
46	The interplay between tissue growth and scaffold degradation in engineered tissue constructs. Journal of Mathematical Biology, 2013, 67, 1199-1225.	1.9	20
47	Growth-induced axial buckling of a slender elastic filament embedded in an isotropic elastic matrix. International Journal of Non-Linear Mechanics, 2013, 56, 94-104.	2.6	23
48	A continuum model of cell proliferation and nutrient transport in a perfusion bioreactor. Mathematical Medicine and Biology, 2013, 30, 21-44.	1.2	39
49	Homogenization via formal multiscale asymptotics and volume averaging: How do the two techniques compare?. Advances in Water Resources, 2013, 62, 178-206.	3.8	123
50	Heat or mass transfer from a sphere in Stokes flow at low Péclet number. Applied Mathematics Letters, 2013, 26, 392-396.	2.7	3
51	Mathematical Model of Growth Factor Driven Haptotaxis and Proliferation in a Tissue Engineering Scaffold. Bulletin of Mathematical Biology, 2013, 75, 393-427.	1.9	9
52	Multiple travelling-wave solutions in a minimal model for cell motility. Mathematical Medicine and Biology, 2013, 30, 241-272.	1.2	15
53	Steady symmetric low-Reynolds-number flow past a film-coated cylinder. European Journal of Applied Mathematics, 2013, 24, 1-24.	2.9	5
54	An Asymptotic Theory for the Re-Equilibration of a Micellar Surfactant Solution. SIAM Journal on Applied Mathematics, 2012, 72, 201-215.	1.8	10

#	Article	IF	CITATIONS
55	Fluid and mass transport modelling to drive the design of cell-packed hollow fibre bioreactors for tissue engineering applications. Mathematical Medicine and Biology, 2012, 29, 329-359.	1.2	29
56	On the liquid lining in fluid-conveying curved tubes. Journal of Fluid Mechanics, 2012, 705, 213-233.	3.4	9
57	Continuum Modelling of In Vitro Tissue Engineering: A Review. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2012, , 229-266.	1.0	30
58	The energetics of flow through a rapidly oscillating tube with slowly varying amplitude. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 2989-3006.	3.4	5
59	Theoretical models for coronary vascular biomechanics: Progress & challenges. Progress in Biophysics and Molecular Biology, 2011, 104, 49-76.	2.9	62
60	Growth of the chorioallantoic membrane into a rapid-prototyped model pore system: experiments and mathematical model. Biomechanics and Modeling in Mechanobiology, 2011, 10, 539-558.	2.8	2
61	Growth-induced buckling of an epithelial layer. Biomechanics and Modeling in Mechanobiology, 2011, 10, 883-900.	2.8	33
62	A strategy to determine operating parameters in tissue engineering hollow fiber bioreactors. Biotechnology and Bioengineering, 2011, 108, 1450-1461.	3.3	37
63	On the predictions and limitations of the Becker–Döring model for reaction kinetics in micellar surfactant solutions. Journal of Colloid and Interface Science, 2011, 360, 662-671.	9.4	23
64	The energetics of flow through a rapidly oscillating tube. Part 2. Application to an elliptical tube. Journal of Fluid Mechanics, 2010, 648, 123-153.	3.4	16
65	Non-local models for the formation of hepatocyte–stellate cell aggregates. Journal of Theoretical Biology, 2010, 267, 106-120.	1.7	37
66	Definition and validation of operating equations for poly(vinyl alcohol)â€poly(lactideâ€coâ€glycolide) microfiltration membraneâ€scaffold bioreactors. Biotechnology and Bioengineering, 2010, 107, 382-392.	3.3	28
67	Sloshing and slamming oscillations in a collapsible channel flow. Journal of Fluid Mechanics, 2010, 662, 288-319.	3.4	28
68	The energetics of flow through a rapidly oscillating tube. Part 1. General theory. Journal of Fluid Mechanics, 2010, 648, 83-121.	3.4	27
69	A Rational Derivation of a Tube Law from Shell Theory. Quarterly Journal of Mechanics and Applied Mathematics, 2010, 63, 465-496.	1.3	37
70	Local instabilities of flow in a flexible channel: Asymmetric flutter driven by a weak critical layer. Physics of Fluids, 2010, 22, 031902.	4.0	10
71	The Influence of Bioreactor Geometry and the Mechanical Environment on Engineered Tissues. Journal of Biomechanical Engineering, 2010, 132, 051006.	1.3	22
72	A multiphase model for tissue construct growth in a perfusion bioreactor. Mathematical Medicine and Biology, 2010, 27, 95-127.	1.2	38

#	Article	IF	CITATIONS
73	Predicting the onset of high-frequency self-excited oscillations in elastic-walled tubes. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 466, 3635-3657.	2.1	37
74	Annular Thin-Film Flows Driven by Azimuthal Variations in Interfacial Tension. Quarterly Journal of Mechanics and Applied Mathematics, 2009, 62, 403-430.	1.3	3
75	Tracking large solid constructs suspended in a rotating bioreactor: A combined experimental and theoretical study. Biotechnology and Bioengineering, 2009, 104, 1224-1234.	3.3	13
76	Mathematical modelling of fibre-enhanced perfusion inside a tissue-engineering bioreactor. Journal of Theoretical Biology, 2009, 256, 533-546.	1.7	39
77	Chaste: A test-driven approach to software development for biological modelling. Computer Physics Communications, 2009, 180, 2452-2471.	7.5	207
78	A Mathematical Model of Liver Cell Aggregation In Vitro. Bulletin of Mathematical Biology, 2009, 71, 906-930.	1.9	28
79	Modelling crystal aggregation and deposition in the catheterised lower urinary tract. Journal of Mathematical Biology, 2009, 59, 809-840.	1.9	5
80	An integrative computational model for intestinal tissue renewal. Cell Proliferation, 2009, 42, 617-636.	5.3	142
81	Local and global instabilities of flow in a flexible-walled channel. European Journal of Mechanics, B/Fluids, 2009, 28, 541-557.	2.5	52
82	Mathematical modelling of tissue-engineered angiogenesis. Mathematical Biosciences, 2009, 221, 101-120.	1.9	31
83	Remedi: A Research Consortium Applying Engineering Strategies to Establish Regenerative Medicine as a New Industry. IFMBE Proceedings, 2009, , 2209-2212.	0.3	Ο
84	Mathematical challenges in integrative physiology. Journal of Mathematical Biology, 2008, 56, 893-896.	1.9	5
85	In situ monitoring of 3D in vitro cell aggregation using an optical imaging system. Biotechnology and Bioengineering, 2008, 100, 159-167.	3.3	16
86	Experimental and theoretical modelling of blind-ended vessels within a developing angiogenic plexus. Microvascular Research, 2008, 76, 161-168.	2.5	17
87	Flow dynamics in a stented ureter. Mathematical Medicine and Biology, 2008, 26, 1-24.	1.2	37
88	A two-fluid model for tissue growth within a dynamic flow environment. European Journal of Applied Mathematics, 2008, 19, 607-634.	2.9	29
89	Ureteric stents: Investigating flow and encrustation. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2008, 222, 551-561.	1.8	30
90	Unsteady flows in pipes with finite curvature. Journal of Fluid Mechanics, 2008, 600, 133-165.	3.4	36

#	Article	IF	CITATIONS
91	How rapidly oscillating collapsible tubes extract energy from a viscous mean flow. Journal of Fluid Mechanics, 2008, 601, 199-227.	3.4	25
92	Shock formation and non-linear dispersion in a microvascular capillary network. Mathematical Medicine and Biology, 2007, 24, 379-400.	1.2	13
93	Tissue growth in a rotating bioreactor. Part II: fluid flow and nutrient transport problems. Mathematical Medicine and Biology, 2007, 24, 169-208.	1.2	29
94	Mathematical modelling of human mesenchymal stem cell proliferation and differentiation inside artificial porous scaffolds. Journal of Theoretical Biology, 2007, 249, 543-553.	1.7	31
95	Flow and solute uptake in a twisting tube. Journal of Fluid Mechanics, 2006, 562, 173.	3.4	6
96	Transverse flows in rapidly oscillating elastic cylindrical shells. Journal of Fluid Mechanics, 2006, 547, 185.	3.4	24
97	Tissue growth in a rotating bioreactor. Part I: mechanical stability. Mathematical Medicine and Biology, 2006, 23, 311-337.	1.2	33
98	Transient elastohydrodynamic drag on a particle moving near a deformable wall. Quarterly Journal of Mechanics and Applied Mathematics, 2006, 59, 277-300.	1.3	26
99	T-cell motility in the early stages of the immune response modeled as a random walk amongst targets. Physical Review E, 2006, 74, 011910.	2.1	26
100	Coriolis effects in a rotating Hele-Shaw cell. Physics of Fluids, 2005, 17, 048101.	4.0	28
101	Steady flows in pipes with finite curvature. Physics of Fluids, 2005, 17, 077102.	4.0	47
102	The effect of ureteric stents on urine flow: Reflux. Journal of Mathematical Biology, 2004, 49, 56-82.	1.9	47
103	A mathematical model for the laser treatment of heart disease. Journal of Biomechanics, 2004, 37, 281-288.	2.1	8
104	Flow in a wavy-walled channel lined with a poroelastic layer. Journal of Fluid Mechanics, 2003, 492, 23-45.	3.4	25
105	The propagation of a surfactant laden liquid plug in a capillary tube. Physics of Fluids, 2002, 14, 471-480.	4.0	45
106	Solute uptake through the walls of a pulsating channel. Journal of Fluid Mechanics, 2001, 433, 193-208.	3.4	23
107	The propagation of a liquid bolus along a liquid-lined flexible tube. Journal of Fluid Mechanics, 2000, 406, 309-335.	3.4	64
108	Oscillatory flow in a tube of time-dependent curvature. Part 1. Perturbation to flow in a stationary curved tube. Journal of Fluid Mechanics, 1999, 383, 327-352.	3.4	36

#	Article	IF	CITATIONS
109	Flow in a tube with non-uniform, time-dependent curvature: governing equations and simple examples. Journal of Fluid Mechanics, 1996, 323, 237-265.	3.4	32