Sayan Ganguly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1363475/publications.pdf

Version: 2024-02-01

41323 95218 4,849 79 49 68 citations h-index g-index papers 81 81 81 3695 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Polymer Nanocomposites for Electromagnetic Interference Shielding: A Review. Journal of Nanoscience and Nanotechnology, 2018, 18, 7641-7669.	0.9	155
2	An approach to prepare mechanically robust full IPN strengthened conductive cotton fabric for high strain tolerant electromagnetic interference shielding. Chemical Engineering Journal, 2018, 344, 138-154.	6.6	151
3	Fabrication of Reduced Graphene Oxide/Silver Nanoparticles Decorated Conductive Cotton Fabric for High Performing Electromagnetic Interference Shielding and Antibacterial Application. Fibers and Polymers, 2019, 20, 1161-1171.	1.1	140
4	Sonochemical green reduction to prepare Ag nanoparticles decorated graphene sheets for catalytic performance and antibacterial application. Ultrasonics Sonochemistry, 2017, 39, 577-588.	3.8	133
5	Low percolation threshold and electromagnetic shielding effectiveness of nano-structured carbon based ethylene methyl acrylate nanocomposites. Composites Part B: Engineering, 2017, 119, 41-56.	5.9	132
6	Synthesis and characterization of graphene oxide filled ethylene methyl acrylate hybrid nanocomposites. RSC Advances, 2016, 6, 20781-20790.	1.7	126
7	Green approach to photoluminescent carbon dots for imaging of gram-negative bacteria <i>Escherichia coli</i> Nanotechnology, 2017, 28, 195501.	1.3	109
8	Heteroatom doped photoluminescent carbon dots for sensitive detection of acetone in human fluids. Sensors and Actuators B: Chemical, 2018, 266, 583-593.	4.0	99
9	Advancement in science and technology of carbon dot-polymer hybrid composites: a review. Functional Composites and Structures, 2019, 1, 022001.	1.6	99
10	Fabrication and investigation of 3D tuned PEG/PEDOT: PSS treated conductive and durable cotton fabric for superior electrical conductivity and flexible electromagnetic interference shielding. Composites Science and Technology, 2019, 181, 107682.	3.8	97
11	Thermal-air ageing treatment on mechanical, electrical, and electromagnetic interference shielding properties of lightweight carbon nanotube based polymer nanocomposites. Composites Part A: Applied Science and Manufacturing, 2018, 107, 447-460.	3.8	95
12	Graphene based emergent nanolights: a short review on the synthesis, properties and application. Research on Chemical Intermediates, 2019, 45, 3823-3853.	1.3	94
13	A simplistic approach to green future with eco-friendly luminescent carbon dots and their application to fluorescent nano-sensor †turn-off†probe for selective sensing of copper ions. Materials Science and Engineering C, 2017, 75, 1456-1464.	3.8	90
14	Poly(N-vinylpyrrolidone)-stabilized colloidal graphene-reinforced poly(ethylene-co-methyl acrylate) to mitigate electromagnetic radiation pollution. Polymer Bulletin, 2020, 77, 2923-2943.	1.7	90
15	Microwave-Synthesized Polysaccharide-Derived Carbon Dots as Therapeutic Cargoes and Toughening Agents for Elastomeric Gels. ACS Applied Materials & Elastome	4.0	90
16	Ultra-light weight, water durable and flexible highly electrical conductive polyurethane foam for superior electromagnetic interference shielding materials. Journal of Materials Science: Materials in Electronics, 2018, 29, 10177-10189.	1.1	86
17	Superior electromagnetic interference shielding effectiveness and electro-mechanical properties of EMA-IRGO nanocomposites through the in-situ reduction of GO from melt blended EMA-GO composites. Composites Part B: Engineering, 2018, 134, 46-60.	5.9	86
18	Applications of N-Doped Carbon Dots as Antimicrobial Agents, Antibiotic Carriers, and Selective Fluorescent Probes for Nitro Explosives. ACS Applied Bio Materials, 2020, 3, 8023-8031.	2.3	86

1.7

62

#	Article	IF	CITATIONS
19	A strategy to achieve enhanced electromagnetic interference shielding at low concentration with a new generation of conductive carbon black in a chlorinated polyethylene elastomeric matrix. Physical Chemistry Chemical Physics, 2016, 18, 24591-24599.	1.3	85
20	Green Reduced Graphene Oxide Toughened Semi-IPN Monolith Hydrogel as Dual Responsive Drug Release System: Rheological, Physicomechanical, and Electrical Evaluations. Journal of Physical Chemistry B, 2018, 122, 7201-7218.	1.2	85
21	Heteroatom doped blue luminescent carbon dots as a nano-probe for targeted cell labeling and anticancer drug delivery vehicle. Materials Chemistry and Physics, 2019, 237, 121860.	2.0	79
22	Immobilization of Heteroatom-Doped Carbon Dots onto Nonpolar Plastics for Antifogging, Antioxidant, and Food Monitoring Applications. Langmuir, 2021, 37, 3508-3520.	1.6	78
23	Mechanically robust dual responsive water dispersible-graphene based conductive elastomeric hydrogel for tunable pulsatile drug release. Ultrasonics Sonochemistry, 2018, 42, 212-227.	3.8	77
24	Zinc and nitrogen ornamented bluish white luminescent carbon dots for engrossing bacteriostatic activity and Fenton based bio-sensor. Materials Science and Engineering C, 2018, 88, 115-129.	3.8	76
25	Carbon-Dots-Initiated Photopolymerization: An <i>In Situ</i> Synthetic Approach for MXene/Poly(norepinephrine)/Copper Hybrid and its Application for Mitigating Water Pollution. ACS Applied Materials & Diterraces, 2021, 13, 31038-31050.	4.0	73
26	Waste chimney oil to nanolights: A low cost chemosensor for tracer metal detection in practical field and its polymer composite for multidimensional activity. Journal of Photochemistry and Photobiology B: Biology, 2018, 180, 56-67.	1.7	72
27	Carbon Nanostructures Based Mechanically Robust Conducting Cotton Fabric for Improved Electromagnetic Interference Shielding. Fibers and Polymers, 2018, 19, 1064-1073.	1.1	69
28	Polysaccharide and poly(methacrylic acid) based biodegradable elastomeric biocompatible semi-IPN hydrogel for controlled drug delivery. Materials Science and Engineering C, 2018, 92, 34-51.	3.8	69
29	High-performance carbon nanofiber coated cellulose filter paper for electromagnetic interference shielding. Cellulose, 2017, 24, 5117-5131.	2.4	68
30	Surface quaternized nanosensor as a one-arrow-two-hawks approach for fluorescence turn "on–off–on―bifunctional sensing and antibacterial activity. New Journal of Chemistry, 2019, 43, 6205-6219.	1.4	66
31	Converting waste Allium sativum peel to nitrogen and sulphur co-doped photoluminescence carbon dots for solar conversion, cell labeling, and photobleaching diligences: A path from discarded waste to value-added products. Journal of Photochemistry and Photobiology B: Biology, 2019, 197, 111545.	1.7	65
32	Biocompatible carbon dots derived from \hat{l}^2 -carrageenan and phenyl boronic acid for dual modality sensing platform of sugar and its anti-diabetic drug release behavior. International Journal of Biological Macromolecules, 2019, 132, 316-329.	3.6	65
33	Mussel-Inspired Polynorepinephrine/MXene-Based Magnetic Nanohybrid for Electromagnetic Interference Shielding in X-Band and Strain-Sensing Performance. Langmuir, 2022, 38, 3936-3950.	1.6	65
34	Natural saponin stabilized nano-catalyst as efficient dye-degradation catalyst. Nano Structures Nano Objects, 2018, 16, 86-95.	1.9	64
35	Starch functionalized biodegradable semi-IPN as a pH-tunable controlled release platform for memantine. International Journal of Biological Macromolecules, 2017, 95, 185-198.	3.6	63
36	Synthesis of a novel pH responsive phyllosilicate loaded polymeric hydrogel based on poly(acrylic) Tj ETQq0 0 0 0	gBT /Over	lock 10 Tf 50

for the sustained release of an antibiotic drug. RSC Advances, 2015, 5, 18312-18327.

3

36

#	Article	lF	CITATIONS
37	Highly conductive and flexible nano-structured carbon-based polymer nanocomposites with improved electromagnetic-interference-shielding performance. Materials Research Express, 2017, 4, 105039.	0.8	62
38	Mussel inspired green synthesis of silver nanoparticles-decorated halloysite nanotube using dopamine: characterization and evaluation of its catalytic activity. Applied Nanoscience (Switzerland), 2018, 8, 173-186.	1.6	61
39	Acoustic Green Synthesis of Graphene-Gallium Nanoparticles and PEDOT:PSS Hybrid Coating for Textile To Mitigate Electromagnetic Radiation Pollution. ACS Applied Nano Materials, 2022, 5, 1644-1655.	2.4	61
40	Effect of thermal-air ageing treatment on mechanical properties and electromagnetic interference shielding effectiveness of low-cost nano-structured carbon filled chlorinated polyethylene. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 225, 140-149.	1.7	60
41	Mechanically robust conductive carbon clusters confined ethylene methyl acrylate–based flexible composites for superior shielding effectiveness. Polymers for Advanced Technologies, 2018, 29, 95-110.	1.6	60
42	Microwave assisted green synthesis of Zwitterionic photolumenescent N-doped carbon dots: An efficient †on-off†chemosensor for tracer Cr(+6) considering the inner filter effect and nano drug-delivery vector. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 579, 123604.	2.3	58
43	Tailor made magnetic nanolights: fabrication to cancer theranostics applications. Nanoscale Advances, 2021, 3, 6762-6796.	2.2	57
44	Dual doped biocompatible multicolor luminescent carbon dots for bio labeling, UVâ€active marker and fluorescent polymer composite. Luminescence, 2018, 33, 1136-1145.	1.5	55
45	Synthesis of polydopamine-coated halloysite nanotube-based hydrogel for controlled release of a calcium channel blocker. RSC Advances, 2016, 6, 105350-105362.	1.7	53
46	Design of psyllium-g-poly(acrylic acid-co-sodium acrylate)/cloisite 10A semi-IPN nanocomposite hydrogel and its mechanical, rheological and controlled drug release behaviour. International Journal of Biological Macromolecules, 2018, 111, 983-998.	3.6	53
47	A facile green synthesis of amino acid boosted Ag decorated reduced graphene oxide nanocomposites and its catalytic activity towards 4-nitrophenol reduction. Surfaces and Interfaces, 2018, 13, 79-91.	1.5	53
48	Photopolymerized Thin Coating of Polypyrrole/Graphene Nanofiber/Iron Oxide onto Nonpolar Plastic for Flexible Electromagnetic Radiation Shielding, Strain Sensing, and Nonâ€Contact Heating Applications. Advanced Materials Interfaces, 2021, 8, 2101255.	1.9	53
49	In-situ synthesis of magnetic nanoparticle immobilized heterogeneous catalyst through mussel mimetic approach for the efficient removal of water pollutants. Colloids and Interface Science Communications, 2019, 33, 100218.	2.0	52
50	Design of Magnetic Hydrogels for Hyperthermia and Drug Delivery. Polymers, 2021, 13, 4259.	2.0	52
51	A facile green synthesis of silver nanoparticle-decorated hydroxyapatite for efficient catalytic activity towards 4-nitrophenol reduction. Research on Chemical Intermediates, 2018, 44, 1189-1208.	1.3	51
52	Combination effect of carbon nanofiber and ketjen carbon black hybrid nanofillers on mechanical, electrical, and electromagnetic interference shielding properties of chlorinated polyethylene nanocomposites. Composites Part B: Engineering, 2020, 197, 108071.	5.9	51
53	Strongly blue-luminescent N-doped carbogenic dots as a tracer metal sensing probe in aqueous medium and its potential activity towards in situ Ag-nanoparticle synthesis. Sensors and Actuators B: Chemical, 2017, 252, 735-746.	4.0	50
54	Acoustic cavitation assisted destratified clay tactoid reinforced in situ elastomer-mimetic semi-IPN hydrogel for catalytic and bactericidal application. Ultrasonics Sonochemistry, 2020, 60, 104797.	3.8	49

#	Article	IF	CITATIONS
55	3D printed magnetic polymer composite hydrogels for hyperthermia and magnetic field driven structural manipulation. Progress in Polymer Science, 2022, 131, 101574.	11.8	49
56	Review: Remotely controlled magneto-regulation of therapeutics from magnetoelastic gel matrices. Biotechnology Advances, 2020, 44, 107611.	6.0	47
57	3Dâ€Enhanced, Highâ€Performing, Superâ€hydrophobic and Electromagneticâ€Interference Shielding Fabrics Based on Silver Paint and Their Use in Antibacterial Applications. ChemistrySelect, 2019, 4, 11748-11754.	0.7	45
58	Water Uptake Kinetics and Control Release of Agrochemical Fertilizers from Nanoclay-Assisted Semi-interpenetrating Sodium Acrylate-Based Hydrogel. Polymer-Plastics Technology and Engineering, 2017, 56, 744-761.	1.9	41
59	A facile green synthesis of silver nanoparticles decorated silica nanocomposites using mussel inspired polydopamine chemistry and assessment its catalytic activity. Journal of Environmental Chemical Engineering, 2018, 6, 6989-7001.	3.3	38
60	Preparation and Properties of Halloysite Nanotubes/Poly(ethylene methyl acrylate)-Based Nanocomposites by Variation of Mixing Methods. Polymer-Plastics Technology and Engineering, 2018, 57, 997-1014.	1.9	37
61	An Insight Into the Physico-Mechanical Signatures of Silylated Graphene Oxide in Poly(ethylene methyl) Tj ETQq1	1 0,78431 1.0	4.rgBT /Over
62	A comparative study of physico-mechanical and electrical properties of polymer-carbon nanofiber in wet and melt mixing methods. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2019, 245, 95-106.	1.7	33
63	Mussel-inspired Ag/poly(norepinephrine)/MnO2 heterogeneous nanocatalyst for efficient reduction of 4-nitrophenol and 4-nitroaniline: an alternative approach. Research on Chemical Intermediates, 2020, 46, 3629-3650.	1.3	33
64	Temperatureâ€Dependent Study of Catalytic Ag Nanoparticles Entrapped Resin Nanocomposite towards Reduction of 4â€Nitrophenol. ChemistrySelect, 2019, 4, 3665-3671.	0.7	32
65	Micro-computed tomography enhanced cross-linked carboxylated acrylonitrile butadiene rubber with the decoration of new generation conductive carbon black for high strain tolerant electromagnetic wave absorber. Materials Today Communications, 2020, 24, 100989.	0.9	29
66	Layer by layer controlled synthesis at room temperature of triâ€modal (<scp>MRI</scp> , fluorescence) Tj ETQq0 C for diagnostic applications. Polymers for Advanced Technologies, 2021, 32, 3909-3921.	0 0 rgBT /C 1.6	Overlock 10 7 25
67	Electrical conductivity and electromagnetic interference shielding effectiveness of nanoâ€structured carbon assisted poly(methyl methacrylate) nanocomposites. Polymer Engineering and Science, 2020, 60, 2414-2427.	1.5	22
68	Physicoâ€mechanical, rheological and gas barrier properties of organoclay and inorganic phyllosilicate reinforced thermoplastic films. Journal of Applied Polymer Science, 2021, 138, 49735.	1.3	21
69	Synthesis of hydroxyapatite nanorods and its use as a nanoreinforcement block for ethylene methacrylate copolymer matrix. Polymer Bulletin, 2019, 76, 3621-3642.	1.7	18
70	Synthesis of Mussel Inspired Polydopamine Coated Halloysite Nanotubes Based Semiâ€PN: An Approach to Fine Tuning in Drug Release and Mechanical Toughening. Macromolecular Symposia, 2018, 382, 1800076.	0.4	17
71	Isolation and mass spectrometry based hydroxyproline mapping of type II collagen derived from Capra hircus ear cartilage. Communications Biology, 2019, 2, 146.	2.0	13
72	Characterization tools and techniques of hydrogels. , 2020, , 481-517.		13

#	Article	IF	CITATION
73	A Review on Synthesis Methods of Phyllosilicate- and Graphene-Filled Composite Hydrogels. Journal of Composites Science, 2022, 6, 15.	1.4	13
74	Silane functionalization of sodium montmorillonite and halloysite (HNT) nanoclays by †grafting to' method to improve physico-mechanical and barrier properties of LLDPE/clay nanocomposites. Polymer Bulletin, 2023, 80, 4307-4335.	1.7	13
75	A comparison on self-seeding and isothermal crystallization of polyethylene in solution using small angle neutron scattering. Polymer, 2015, 61, 192-197.	1.8	11
76	Selective cross-linking of carboxylated acrylonitrile butadiene rubber and study of their technological compatibility with poly(ethylene-co-methyl acrlylate) by means of mechanical, thermal, and chemical analysis. Polymer Bulletin, 2019, 76, 1877-1897.	1.7	10
77	Chlorosulphonated Polyethylene and Its Composites for Electronic Applications. Springer Series on Polymer and Composite Materials, 2016, , 229-259.	0.5	10
78	Rheological Properties of Polymer–Carbon Composites. Springer Series on Polymer and Composite Materials, 2019, , 271-294.	0.5	7
79	Preparation/processing of polymer-graphene composites by different techniques. , 2022, , 45-74.		5