Sung-Soo Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1363403/publications.pdf Version: 2024-02-01

SUNC-SOO KIM

#	Article	IF	CITATIONS
1	Magnetic, dielectric, and microwave absorbing properties of iron particles dispersed in rubber matrix in gigahertz frequencies. Journal of Applied Physics, 2005, 97, 10F905.	1.1	234
2	Magnetic and microwave absorbing properties of Co–Fe thin films plated on hollow ceramic microspheres of low density. Journal of Magnetism and Magnetic Materials, 2004, 271, 39-45.	1.0	217
3	M-hexaferrites with planar magnetic anisotropy and their application to high-frequency microwave absorbers. IEEE Transactions on Magnetics, 1999, 35, 3151-3153.	1.2	209
4	Wide bandwidth pyramidal absorbers of granular ferrite and carbonyl iron powders. IEEE Transactions on Magnetics, 2000, 36, 3272-3274.	1.2	122
5	Microwave absorbing properties of Co-substituted Ni/sub 2/W hexaferrites in Ka-band frequencies (26.5-40 GHz). IEEE Transactions on Magnetics, 2002, 38, 3108-3110.	1.2	61
6	Design of wide-bandwidth electromagnetic wave absorbers using the inductance and capacitance of a square loop-frequency selective surface calculated from an equivalent circuit model. Optics Communications, 2016, 359, 372-377.	1.0	51
7	Title is missing!. , 2003, 10, 95-101.		35
8	Abnormal grain growth and magnetic loss in Mn-Zn ferrites containing CaO and SiO/sub 2/. IEEE Transactions on Magnetics, 2000, 36, 3405-3407.	1.2	31
9	Microwave absorbers of two-layer composites laminate for wide oblique incidence angles. Materials & Design, 2010, 31, 1547-1552.	5.1	31
10	The effect of Zn and Ni substitution on magnetic and microwave absorbing properties of Co2W hexagonal ferrites. Ceramics International, 2019, 45, 9406-9409.	2.3	31
11	Magnetic and microwave absorbing properties of Ti and Co substituted M-hexaferrites in Ka-band frequencies (26.5 ~ 40ÂGHz). Journal of Electroceramics, 2010, 24, 314-318.	0.8	28
12	Dual-band microwave absorption properties of metamaterial absorber composed of split ring resonator on carbonyl iron powder composites. Electronic Materials Letters, 2015, 11, 447-451.	1.0	28
13	Microwave absorbing properties of Ag-coated Ni–Zn ferrite microspheres prepared by electroless plating. Journal of Alloys and Compounds, 2011, 509, 4399-4403.	2.8	27
14	Conduction noise attenuation by iron particles-rubber composites attached on microstrip line. IEEE Transactions on Magnetics, 2005, 41, 3562-3564.	1.2	23
15	Microwave absorption of λâ^•4 wave absorbers using high permeability magnetic composites in quasimicrowave frequency band. Journal of Applied Physics, 2008, 103, 07E504.	1.1	23
16	Microwave Absorbing Properties of Magnetic Composite Sheets for Oblique Incidence Angles. IEEE Transactions on Magnetics, 2011, 47, 4314-4317.	1.2	23
17	Ultrawide Bandwidth Electromagnetic Wave Absorbers Composed of Double-Layer Frequency Selective Surfaces with Different Patterns. Scientific Reports, 2018, 8, 13889.	1.6	21
18	Design and Fabrication of 77-GHz Radar Absorbing Materials Using Frequency-Selective Surfaces for Autonomous Vehicles Application. IEEE Microwave and Wireless Components Letters, 2019, 29, 779-782.	2.0	21

SUNG-SOO KIM

#	Article	IF	CITATIONS
19	Preparation of Ag-coated hollow microspheres via electroless plating for application in lightweight microwave absorbers. Applied Surface Science, 2015, 329, 219-222.	3.1	19
20	Ultrawide Bandwidth Electromagnetic Wave Absorbers Using a High-capacitive Folded Spiral Frequency Selective Surface in a Multilayer Structure. Scientific Reports, 2019, 9, 16494.	1.6	19
21	Control of complex permeability and permittivity by air cavity in ferrite-rubber composite sheets and their wide-band absorbing characteristics. IEEE Transactions on Magnetics, 1999, 35, 3181-3183.	1.2	18
22	Effects of temperature and catalysts on the synthesis of carbon nanotubes by chemical vapor deposition. Metals and Materials International, 2010, 16, 663-667.	1.8	16
23	Design of ultra wideâ€bandwidth doubleâ€layer electromagnetic wave absorbers with squareâ€loop frequency selective surfaces. Microwave and Optical Technology Letters, 2018, 60, 2013-2018.	0.9	15
24	Numerical Analysis on Power Absorption by \${m Fe}_{3}{m O}_{4}\$ Thin Films for Conduction Noise in Microstrip Line. IEEE Transactions on Magnetics, 2012, 48, 3490-3493.	1.2	13
25	Design of grid-type microwave absorbers with high-permittivity composites of Ag-coated Ni-Zn ferrite particles. Journal of Applied Physics, 2015, 117, .	1.1	13
26	Doubleâ€ l ayered microwave absorbers composed of ferrite and carbon fiber composite laminates. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 4602-4605.	0.8	11
27	The Influence of Magnetic and Dielectric Loss on the Noise Absorption of Iron Particles-Rubber Composites Attached to a Microstrip Line. Metals and Materials International, 2008, 14, 233-237.	1.8	10
28	Conduction noise absorption by ITO thin films attached to microstrip line utilizing Ohmic loss. Journal of Applied Physics, 2010, 108, .	1.1	10
29	Electroless Plating of Co Thin Film on Hollow Glass Microspheres and the Effect of Film Thickness on Microwave Absorbance. IEEE Transactions on Magnetics, 2012, 48, 3494-3497.	1.2	10
30	Microwave absorbing properties of hollow microspheres plated with magnetic metal films. Journal of Applied Physics, 2014, 115, 17A528.	1.1	10
31	Microstructure of nanopores in AAO templates favoring the growth of nickel nanowires by electrodeposition. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 4429-4432.	0.8	9
32	Microwave absorbance of Ni-Fe thin films on hollow ceramic microspheres dispersed in a rubber matrix. Journal of Alloys and Compounds, 2016, 687, 22-27.	2.8	9
33	Numerical analysis on power loss mechanism of Fe55Al18O27 thin films for conduction noise through microstrip line. Journal of Applied Physics, 2009, 105, 07A508.	1.1	8
34	Multiple magnetic resonance and microwave absorption of metamaterial absorbers composed of double split ring resonators on grounded carbonyl iron composites. AIP Advances, 2017, 7, 125223.	0.6	7
35	Design of wide bandwidth pyramidal microwave absorbers using ferrite composites with broad magnetic loss spectra. Electronic Materials Letters, 2016, 12, 610-614.	1.0	6
36	High apacitive frequency selective surfaces of folded spiral conductor arrays. Microwave and Optical Technology Letters, 2020, 62, 301-307.	0.9	6

SUNG-SOO KIM

#	Article	IF	CITATIONS
37	Influence of magnetic and dielectric loss of polymer composites containing magnetic flake particles (Sendust, Permalloy) on noise absorption in microstrip lines. Research on Chemical Intermediates, 2014, 40, 2553-2558.	1.3	5
38	Numerical analysis of complex impedance and microwave absorption of metamaterials composed of split cut wires on grounded dielectric substrate. Applied Physics A: Materials Science and Processing, 2014, 117, 1401-1407.	1.1	5
39	High-frequency noise absorbing properties of nickel nanowire arrays prepared by DC electrodeposition. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 4025-4028.	0.8	4
40	Analysis of conduction noise attenuation by magnetic composite sheets on a microstrip line by the finite element method. Metals and Materials International, 2010, 16, 115-119.	1.8	3
41	Microwave Absorbing Properties of Carbonyl Iron Particle Composites with Frequency Selective Surface. Journal of Korean Institute of Metals and Materials, 2019, 57, 741-746.	0.4	3
42	Microwave Reflective and Absorbent Properties of Spinel Ferrite Composites. Journal of the Magnetics Society of Japan, 1998, 22, S1_375-377.	0.4	2
43	Enhancement of conduction noise absorption by hybrid absorbers composed of indium-tin-oxide thin film and magnetic composite sheet on a microstrip line. Applied Physics Letters, 2014, 104, .	1.5	2
44	M-hexaferrites with planar magneitc anisotropy and their application to high-frequency microwave absorber. , 1999, , .		1
45	Grain Growth Behavior in Mn-Zn Ferrites Containing CaO and SiO ₂ . Journal of the Magnetics Society of Japan, 1998, 22, S1_74-76.	0.4	0
46	Control of complex permeability and permittivity by air cavity in ferrite rubber composite sheets and their wide-band absorbing characteristics. , 1999, , .		0
47	Wide bandwidth pyramidal absorbers of granular ferrite and carbonyl iron powders. , 0, , .		0
48	Conduction noise attenuation by iron particles-rubber composites attached on microstrip line. , 2005, , .		0
49	Numerical analysis on thickness effect of magnetic thin films on conduction noise absorption in microstrip line. Metals and Materials International, 2011, 17, 805-810.	1.8	0
50	Numerical analysis of dominant loss parameters of ferrite thin films for conduction noise absorption in microstrip lines. Journal of Applied Physics, 2014, 115, 17A526.	1.1	0
51	Influence of substrate on broadband microwave absorption of metamaterial absorbers composed of multi-scaled split cut wires. , 2015, , .		0
52	Multiple magnetic resonance and broadband microwave absorption of metamaterials composed of split cut wires. AIP Conference Proceedings, 2017, , .	0.3	0
53	Magnetic Permeability Spectra of Metamaterials Composed of Split Cut Wires Retrieved from Circuit Theory. , 2018, , .		0