
Yongfeng Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1363275/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mn3O4 nanocrystalline@carbon nanotube-carbon nanotube for long-lifetime and excellent rate-capability zinc-ion storage. Electrochimica Acta, 2022, 403, 139649.	2.6	4
2	Constructing zigzag-like hollow mesoporous nanospheres MoO ₂ /C with superior lithium storage performance. Nanotechnology, 2022, 33, 135402.	1.3	5
3	Bamboo-like carbon nanotube-carbon nanotube for high-performance sodium-ion batteries. Materials Letters, 2022, 311, 131587.	1.3	5
4	Ultrasmall Mn3O4 nanocrystalline@three-dimensional macroporous honeycomb-like hollow carbon matrix for high-rate and long-lifetime zinc-ion storage. Electrochimica Acta, 2022, 419, 140396.	2.6	5
5	Organic–Inorganic Hybrid Electron Transport Layer for Rigid or Flexible Perovskite Solar Cells under Ambient Conditions. ACS Sustainable Chemistry and Engineering, 2022, 10, 6826-6834.	3.2	5
6	CuGaO ₂ Nanosheets and CuCrO ₂ Nanoparticles Mixed with Spiro-OMeTAD as the Hole-Transport Layer in Perovskite Solar Cells. ACS Applied Nano Materials, 2022, 5, 7312-7320.	2.4	6
7	Yolk-shell Co-glycerate@Fe-Co Prussian blue analogue spheres for high-performance lithium-ion batteries. Materials Letters, 2022, 320, 132358.	1.3	4
8	CuGaO ₂ Nanosheet Arrays as the Hole-Transport Layer in Inverted Perovskite Solar Cells. ACS Applied Nano Materials, 2022, 5, 10055-10063.	2.4	9
9	Hierarchical hollow superstructure cobalt selenide bird nests for high-performance lithium storage. Journal of Colloid and Interface Science, 2022, 627, 449-458.	5.0	12
10	Nano tube-in-tube CNT@void@TiO2@C with excellent ultrahigh rate capability and long cycling stability for lithium ion storage. Journal of Alloys and Compounds, 2021, 851, 156795.	2.8	34
11	Triple-layered sandwich nanotube of carbon nanotube@TiO2 nanocrystalline@carbon with superior lithium storage performance. Materials Research Bulletin, 2021, 133, 111076.	2.7	12
12	Carbon@NiCoO2-CoOOH Double-Shelled Hollow Burr Nanospheres as Anode Material for Lithium-Ion Batteries. Journal of Electronic Materials, 2021, 50, 3030-3036.	1.0	4
13	Superior rate-capability and long-lifespan carbon nanotube-in-nanotube@Sb ₂ S ₃ anode for lithium-ion storage. Journal of Materials Chemistry A, 2021, 9, 22334-22346.	5.2	48
14	Intimately coupled Mn ₃ O ₄ nanocrystalline@3D honeycomb hierarchical porous network scaffold carbon for high-performance cathode of aqueous zinc-ion batteries. Nanotechnology, 2021, 32, 405403.	1.3	6
15	Multiâ€shelled Hollow Nanospheres of SnO ₂ /Sn@TiO ₂ @C Composite as Highâ€performance Anode for Lithiumâ€Ion Batteries. ChemElectroChem, 2021, 8, 3282-3293.	1.7	17
16	Constructing metal-organic framework-derived Mn ₂ O ₃ multishelled hollow nanospheres for high-performance cathode of aqueous zinc-ion batteries. Nanotechnology, 2021, 32, 435401.	1.3	16
17	CoO hierarchical mesoporous nanospheres@TiO2@C for high-performance lithium-ion storage. Applied Surface Science, 2021, 556, 149810.	3.1	29
18	Preparation and high-performance lithium storage of intimately coupled MnO2 nanosheets@carbon nanotube-in-nanotube. Sustainable Materials and Technologies, 2021, 29, e00312.	1.7	2

#	Article	IF	CITATIONS
19	Intimately coupled MoP nanocrystalline@carbon nanosheets-assembled hierarchical mesoporous nanospheres for high-performance sodium-ion storage. Electrochimica Acta, 2021, 389, 138712.	2.6	9
20	Carbon nanosheet@MoO2/Mo2C nanocrystalline-assembled hierarchical mesoporous nanospheres as high-performance anode for sodium-ion batteries. Journal of Alloys and Compounds, 2021, , 162681.	2.8	4
21	Pomegranate-like C@TiO ₂ mesoporous honeycomb spheres for high performance lithium ion batteries. Nanotechnology, 2020, 31, 435410.	1.3	9
22	Watermelon-like TiO ₂ nanoparticle (P25)@microporous amorphous carbon sphere with excellent rate capability and cycling performance for lithium-ion batteries. Nanotechnology, 2020, 31, 215407.	1.3	26
23	3D porous framework of ZnO nanoparticles assembled from double carbon shells consisting of hard and soft carbon networks for high performance lithium ion batteries. Nanotechnology, 2020, 31, 285402.	1.3	9
24	Construction of Co ₃ O ₄ three-dimensional mesoporous framework structures from zeolitic imidazolate framework-67 with enhanced lithium storage properties. Nanotechnology, 2019, 30, 435402.	1.3	19
25	NiCo2O4 doubled-shelled nanocages with enhanced lithium storage properties. Polyhedron, 2019, 170, 101-108.	1.0	8
26	Capsule-like Co3O4 nanocage@Co3O4 nanoframework/TiO2 nodes as anode material for lithium-ion batteries. Materials Letters, 2019, 253, 5-8.	1.3	5
27	Co ₃ O ₄ hollow nanospheres/carbon-assembled mesoporous polyhedron with internal bubbles encapsulating TiO ₂ nanosphere for high-performance lithium ion batteries. Nanotechnology, 2019, 30, 355401.	1.3	16
28	Construction of triple-layered sandwich nanotubes of carbon@mesoporous TiO2 nanocrystalline@carbon as high-performance anode materials for lithium-ion batteries. Electrochimica Acta, 2019, 312, 119-127.	2.6	18
29	Foam-like, 3-dimension mesoporous N-doped carbon-assembling TiO2 nanoparticles (P25) as high-performance anode material for lithium-ion batteries. Journal of Power Sources, 2019, 420, 38-45.	4.0	58
30	Construction of Co3O4@TiO2 heterogeneous mesoporous hollow nanocage-in-nanocage from metal-organic frameworks with enhanced lithium storage properties. Journal of Alloys and Compounds, 2019, 790, 814-821.	2.8	16
31	TiO2 nanocrystalline-assembled mesoporous nanosphere as high-performance anode for lithium-ion batteries. Materials Letters, 2019, 240, 96-99.	1.3	12
32	Ultrafine TiO2 nanocrystalline anchored on nitrogen-doped amorphous mesoporous hollow carbon nanospheres as advanced anode for lithium ion batteries. Electrochimica Acta, 2019, 296, 669-675.	2.6	33
33	Co3O4 nanocrystalline-assembled mesoporous hollow polyhedron nanocage-in-nanocage as improved performance anode for lithium-ion batteries. Materials Letters, 2019, 237, 213-215.	1.3	11
34	NiCo2S4 multi-shelled hollow polyhedrons as high-performance anode materials for lithium-ion batteries. Electrochimica Acta, 2019, 299, 289-297.	2.6	66
35	Cu 2 O@TiO 2 core-shell nanocube composite as improved performance anode materials for lithium-ion batteries. Materials Letters, 2018, 225, 149-151.	1.3	9
36	NiCo2S4/Co3S4 heterogeneous double-shelled nanocages for high-performance electrochemical energy storage. Materials Letters, 2018, 229, 152-155.	1.3	12

#	Article	IF	CITATIONS
37	Heterogeneous triple-shelled TiO2@NiCo2O4@Co3O4 nanocages as improved performance anodes for lithium-ion batteries. Materials Letters, 2018, 232, 228-231.	1.3	10
38	Freestanding hierarchical NiO/MnO 2 core/shell nanocomposite arrays for high-performance electrochemical energy storage. Electrochimica Acta, 2017, 227, 303-309.	2.6	32
39	NiCo ₂ S ₄ @PPy core-shell nanotube arrays on Ni foam for high-performance supercapacitors. Materials Technology, 2017, 32, 815-822.	1.5	17
40	Nickel cobalt sulfide Nanotube Array on Nickel Foam as Anode Material for Advanced Lithium-Ion Batteries. Electrochimica Acta, 2016, 198, 280-286.	2.6	58
41	Cobalt molybdate nanoflake-assembling porous pillar array for high performance pseudocapacitor. Materials Letters, 2016, 164, 260-263.	1.3	12
42	Hierarchical ZnO@NiO core–shell nanorod array as high performance anode material for lithium-ion batteries. Materials Letters, 2013, 111, 1-4.	1.3	32
43	Synthesis and electrochemical performances of ZnO/MnO2 sea urchin-like sleeve array as anode materials for lithium-ion batteries. Electrochimica Acta, 2013, 112, 364-370.	2.6	34
44	Sponge-like mesoporous CuO ribbon clusters as high-performance anode material for lithium-ion batteries. Materials Letters, 2013, 91, 279-282.	1.3	34
45	Coaxial electrospun TiO2/ZnO core–sheath nanofibers film: Novel structure for photoanode of dye-sensitized solar cells. Electrochimica Acta, 2012, 78, 392-397.	2.6	54
46	TiO2/Nb2O5 core–sheath nanofibers film: Co-electrospinning fabrication and its application in dye-sensitized solar cells. Electrochemistry Communications, 2012, 25, 46-49.	2.3	24
47	Sparse MnO2 nanowires clusters for high-performance supercapacitors. Materials Letters, 2012, 73, 194-197.	1.3	22
48	Electrochemical properties of NiO/Co–P nanocomposite as anode materials for lithium ion batteries. Journal of Alloys and Compounds, 2011, 509, 3425-3429.	2.8	24
49	Hierarchically porous Co3O4 film with mesoporous walls prepared via liquid crystalline template for supercapacitor application. Electrochemistry Communications, 2011, 13, 1123-1126.	2.3	143
50	Electrochemical performances of Bi based compound film-coated ZnO as anodic materials of Ni–Zn secondary batteries. Electrochimica Acta, 2011, 56, 4378-4383.	2.6	66
51	Enhanced electrochromic properties of ordered porous nickel oxide thin film prepared by self-assembled colloidal crystal template-assisted electrodeposition. Electrochimica Acta, 2011, 56, 1208-1212.	2.6	114
52	Nickel foam-supported porous Ni(OH)2/NiOOH composite film as advanced pseudocapacitor material. Electrochimica Acta, 2011, 56, 2627-2632.	2.6	200
53	Porous ZnO nanosheets grown on copper substrates as anodes for lithium ion batteries. Electrochimica Acta, 2011, 56, 4960-4965.	2.6	280
54	Electrochromism in mesoporous nanowall cobalt oxide thin films prepared via lyotropic liquid crystal media with electrodeposition. Journal of Membrane Science, 2010, 364, 298-303.	4.1	31

#	Article	IF	CITATIONS
55	Hierarchically ordered porous nickel oxide array film with enhanced electrochemical properties for lithium ion batteries. Electrochemistry Communications, 2010, 12, 890-893.	2.3	96
56	Preparation and electrochemical performances of ZnO nanowires as anode materials for Ni/Zn secondary battery. Electrochimica Acta, 2010, 55, 7050-7054.	2.6	40
57	Preparation and electrochemical performance of nanosized Bi compounds-modified ZnO for Zn/Ni secondary cell. Electrochimica Acta, 2009, 54, 6617-6621.	2.6	46
58	Improved electrochemical performances of core-shell Cu2O/Cu composite prepared by a simple one-step method. Electrochemistry Communications, 2009, 11, 262-265.	2.3	94
59	Electrochemical investigation on nanoflower-like CuO/Ni composite film as anode for lithium ion batteries. Electrochimica Acta, 2009, 54, 1160-1165.	2.6	98
60	Ag-modification improving the electrochemical performance of ZnO anode for Ni/Zn secondary batteries. Journal of Alloys and Compounds, 2009, 479, 624-628.	2.8	60
61	Preparation, characteristics and electrochemical properties of surface-modified LiMn2O4 by doped LiNi0.05Mn1.95O4. Applied Surface Science, 2008, 255, 2225-2229.	3.1	32
62	Electrochemical performance of ZnO nanoplates as anode materials for Ni/Zn secondary batteries. Journal of Power Sources, 2008, 179, 395-400.	4.0	112
63	Electrochemical performances of nanostructured Ni3P–Ni films electrodeposited on nickel foam substrate. Journal of Power Sources, 2008, 185, 519-525.	4.0	55
64	Characteristics and electrochemical performance of Ni-coated ZnO prepared by an electroless plating process. Applied Surface Science, 2008, 254, 5080-5084.	3.1	25
65	Preparation and electrochemical performances of nanoscale FeSn2 as anode material for lithium ion batteries. Journal of Alloys and Compounds, 2008, 457, 81-85.	2.8	55
66	Preparation of Cr-doped Ba4In2O7/In2O3 nanocomposite and its photo-assisted chargeability in hydrogen storage alloy/photocatalyst electrode. Journal of Alloys and Compounds, 2008, 462, 220-224.	2.8	16
67	DC magnetron sputtering prepared AgC thin film anode for thin film lithium ion microbatteries. Journal of Alloys and Compounds, 2007, 436, 290-293.	2.8	9
68	Preparation and electrochemical performances of cubic shape Cu2O as anode material for lithium ion batteries. Journal of Alloys and Compounds, 2007, 441, 52-56.	2.8	104
69	Electrochemical Performances of Ni-Coated ZnO as an Anode Material for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2007, 154, A65.	1.3	164
70	Spherical NiO-C composite for anode material of lithium ion batteries. Electrochimica Acta, 2007, 52, 4177-4181.	2.6	152
71	Net-like SnS/carbon nanocomposite film anode material for lithium ion batteries. Electrochemistry Communications, 2007, 9, 49-53.	2.3	91
72	Effects of abundant Co doping on the structure and electrochemical characteristics of LiMn1.5Ni0.5â^'xCoxO4. Journal of Electroanalytical Chemistry, 2007, 608, 8-14.	1.9	23

#	Article	IF	CITATIONS
73	Effects of stannous ions on the electrochemical performance of the alkaline zinc electrode. Journal of Applied Electrochemistry, 2007, 37, 249-253.	1.5	15
74	Influence of surface modification with Sn6O4(OH)4 on electrochemical performance of ZnO in Zn/Ni secondary cells. Journal of Power Sources, 2007, 165, 905-910.	4.0	65
75	Electrodeposited Growth Habit and Growth Mechanism of ZnO as Anode Material of Secondary Alkaline Zn Battery. Journal of the Electrochemical Society, 2006, 153, A1719.	1.3	25
76	Preparation, characteristics and electrochemical performance of Sn6O4(OH)4-coated ZnO for Zn–Ni secondary battery. Electrochemistry Communications, 2006, 8, 653-657.	2.3	44
77	Preparation and electrochemical properties of mesoporous Si/ZrO2 nanocomposite film as anode material for lithium ion battery. Electrochemistry Communications, 2006, 8, 1610-1614.	2.3	37
78	Electrochemical performance and morphology evolution of nanosized ZnO as anode material of Ni–Zn batteries. Electrochimica Acta, 2006, 51, 3632-3636.	2.6	53
79	Nanoscale SnS with and without carbon-coatings as an anode material for lithium ion batteries. Electrochimica Acta, 2006, 52, 1383-1389.	2.6	84
80	Effect of ZnO nanomaterials associated with Ca(OH)2 as anode material for Ni–Zn batteries. Journal of Power Sources, 2006, 159, 357-360.	4.0	75
81	Synthesis and characterization of LiNi0.8Co0.2O2 as cathode material for lithium-ion batteries by a spray-drying method. Journal of Power Sources, 2006, 159, 291-294.	4.0	15
82	One-step synthesis LiMn2O4 cathode by a hydrothermal method. Journal of Power Sources, 2006, 161, 1260-1263.	4.0	50
83	Electrochemical properties of NiO–Ni nanocomposite as anode material for lithium ion batteries. Journal of Power Sources, 2006, 161, 541-544.	4.0	192
84	Mechanochemical synthesis and electrochemical properties of nanosized SnS as an anode material for lithium ion batteries. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 128, 75-79.	1.7	39
85	Electrochemical Properties of Biphase Ni(OH)[sub 2] Electrodes for Secondary Rechargeable Niâ^•MH Batteries. Journal of the Electrochemical Society, 2006, 153, A738.	1.3	17
86	Magnetron Sputtering Sn-Ag-O Thin Film Anodes For Rechargeable Lithium Ion Batteries. , 2006, , .		1
87	Electrochemical performance of nanosized LiMn2O4 for lithium-ion batteries. Physica B: Condensed Matter, 2005, 369, 221-226.	1.3	11
88	Electrochemical and ex situ XRD studies of a LiMn1.5Ni0.5O4 high-voltage cathode material. Electrochimica Acta, 2005, 50, 4104-4108.	2.6	43
89	Preparation of LiMn2O4 by two methods for lithium ion batteries. Materials Chemistry and Physics, 2005, 93, 461-465.	2.0	16
90	Structural, morphological and electrochemical characteristics of spinel LiMn2O4 prepared by spray-drying method. Scripta Materialia, 2005, 52, 513-517.	2.6	29

#	Article	IF	CITATIONS
91	Size and morphology effects of ZnO anode nanomaterials for Zn/Ni secondary batteries. Nanotechnology, 2005, 16, 803-808.	1.3	46
92	Synthesis and electrochemical characteristics of spinel LiMn2O4 via a precipitation spray-drying process. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 119, 75-79.	1.7	14