
Branko Zevnik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1363127/publications.pdf Version: 2024-02-01

REANKO ZEVNIK

#	Article	IF	CITATIONS
1	History of genome editing: From meganucleases to CRISPR. Laboratory Animals, 2022, 56, 60-68.	1.0	25
2	3R measures in facilities for the production of genetically modified rodents. Lab Animal, 2022, 51, 162-177.	0.4	4
3	A simple and economic protocol for efficient in vitro fertilization using cryopreserved mouse sperm. PLoS ONE, 2021, 16, e0259202.	2.5	7
4	A MAFG-IncRNA axis links systemic nutrient abundance to hepatic glucose metabolism. Nature Communications, 2020, 11, 644.	12.8	29
5	An optimized electroporation approach for efficient CRISPR/Cas9 genome editing in murine zygotes. PLoS ONE, 2018, 13, e0196891.	2.5	74
6	Manipulating the Prion Protein Gene Sequence and Expression Levels with CRISPR/Cas9. PLoS ONE, 2016, 11, e0154604.	2.5	20
7	C57BL/6N Albino/Agouti Mutant Mice as Embryo Donors for Efficient Germline Transmission of C57BL/6 ES Cells. PLoS ONE, 2014, 9, e90570.	2.5	5
8	Early-Onset and Robust Amyloid Pathology in a New Homozygous Mouse Model of Alzheimer's Disease. PLoS ONE, 2009, 4, e7931.	2.5	50
9	GPR30 Does Not Mediate Estrogenic Responses in Reproductive Organs in Mice. Biology of Reproduction, 2009, 80, 34-41.	2.7	233
10	ES Cell Line Establishment. Methods in Molecular Biology, 2009, 530, 187-204.	0.9	4
11	Epididymis seleno-independent glutathione peroxidase 5 maintains sperm DNA integrity in mice. Journal of Clinical Investigation, 2009, 119, 2074-85.	8.2	173
12	A novel panel of mouse models to evaluate the role of human pregnane X receptor and constitutive androstane receptor in drug response. Journal of Clinical Investigation, 2008, 118, 3228-3239.	8.2	130
13	Hybrid Embryonic Stem Cell-Derived Tetraploid Mice Show Apparently Normal Morphological, Physiological, and Neurological Characteristics. Molecular and Cellular Biology, 2003, 23, 3982-3989.	2.3	30
14	Rapid generation of inducible mouse mutants. Nucleic Acids Research, 2003, 31, 12e-12.	14.5	276
15	Male and female mice derived from the same embryonic stem cell clone by tetraploid embryo complementation. Nature Biotechnology, 2002, 20, 455-459.	17.5	137
16	Inflammatory reactions and severe neutropenia in mice lacking the transcriptional repressor Gfi1. Nature Genetics, 2002, 30, 295-300.	21.4	276
17	Features of systemic lupus erythematosus in Dnase1-deficient mice. Nature Genetics, 2000, 25, 177-181.	21.4	749
18	DNA Excision Repair and DNA Damage-Induced Apoptosis Are Linked to Poly(ADP-Ribosyl)ation but Have Different Requirements for p53. Molecular and Cellular Biology, 2000, 20, 6695-6703.	2.3	67

BRANKO ZEVNIK

#	Article	IF	CITATIONS
19	Oncogenic potential of cyclin E in T-cell lymphomagenesis in transgenic mice: evidence for cooperation between cyclin E and Ras but not Myc. Oncogene, 1999, 18, 7816-7824.	5.9	44
20	Zinc finger protein GFI-1 has low oncogenic potential but cooperates strongly with pim and myc genes in T-cell lymphomagenesis. Oncogene, 1998, 17, 2661-2667.	5.9	106
21	Formation of Pluripotent Stem Cells in the Mammalian Embryo Depends on the POU Transcription Factor Oct4. Cell, 1998, 95, 379-391.	28.9	3,037
22	Maintenance of pluripotential embryonic stem cells by stem cell selection. Reproduction, Fertility and Development, 1998, 10, 527.	0.4	48
23	Evidence implicating Gfi-1 and Pim-1 in pre-T-cell differentiation steps associated with β-selection. EMBO Journal, 1998, 17, 5349-5359.	7.8	83
24	A second promoter and enhancer element within the immunoglobulin heavy chain locus. European Journal of Immunology, 1994, 24, 817-821.	2.9	42