Beatrice Del Papa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1363097/publications.pdf

Version: 2024-02-01

30 papers

2,191 citations

16 h-index 28 g-index

30 all docs

30 docs citations

times ranked

30

3322 citing authors

#	Article	IF	CITATIONS
1	Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood, 2011, 117, 3921-3928.	1.4	940
2	HLA-haploidentical transplantation with regulatory and conventional T-cell adoptive immunotherapy prevents acute leukemia relapse. Blood, 2014, 124, 638-644.	1.4	358
3	Mesenchymal cells recruit and regulate T regulatory cells. Experimental Hematology, 2008, 36, 309-318.	0.4	286
4	<i>NOTCH1</i> PEST domain mutation is an adverse prognostic factor in B LL. British Journal of Haematology, 2010, 151, 404-406.	2.5	97
5	Notch1 modulates mesenchymal stem cells mediated regulatory <scp>T</scp> â€cell induction. European Journal of Immunology, 2013, 43, 182-187.	2.9	59
6	NOTCH1 Aberrations in Chronic Lymphocytic Leukemia. Frontiers in Oncology, 2018, 8, 229.	2.8	55
7	γâ€Secretase inhibitor I induces apoptosis in chronic lymphocytic leukemia cells by proteasome inhibition, endoplasmic reticulum stress increase and notch downâ€regulation. International Journal of Cancer, 2013, 132, 1940-1953.	5.1	45
8	Immunoselection and clinical use of T regulatory cells in HLA-haploidentical stem cell transplantation. Best Practice and Research in Clinical Haematology, 2011, 24, 459-466.	1.7	40
9	T regulatory cell separation for clinical application. Transfusion and Apheresis Science, 2012, 47, 213-216.	1.0	38
10	Notch signaling sustains the expression of Mcl-1 and the activity of eIF4E to promote cell survival in CLL. Oncotarget, 2015, 6, 16559-16572.	1.8	37
11	Bepridil exhibits antiâ€leukemic activity associated with NOTCH1 pathway inhibition in chronic lymphocytic leukemia. International Journal of Cancer, 2018, 143, 958-970.	5.1	32
12	Transformation by Retroviral Vectors of Bone Marrow-Derived Mesenchymal Cells Induces Mitochondria-Dependent cAMP-Sensitive Reactive Oxygen Species Production. Stem Cells, 2008, 26, 2843-2854.	3.2	25
13	Clinical-Grade–Expanded Regulatory T Cells Prevent Graft-versus-Host Disease While Allowing a Powerful T Cell–Dependent Graft-versus-Leukemia Effect in Murine Models. Biology of Blood and Marrow Transplantation, 2017, 23, 1847-1851.	2.0	24
14	IL-4-dependent Jagged1 expression/processing is associated with survival of chronic lymphocytic leukemia cells but not with Notch activation. Cell Death and Disease, 2018, 9, 1160.	6.3	22
15	NOTCH1 Is Aberrantly Activated in Chronic Lymphocytic Leukemia Hematopoietic Stem Cells. Frontiers in Oncology, 2018, 8, 105.	2.8	20
16	Decreased NOTCH1 Activation Correlates with Response to Ibrutinib in Chronic Lymphocytic Leukemia. Clinical Cancer Research, 2019, 25, 7540-7553.	7.0	20
17	NOTCH and NF-κB interplay in chronic lymphocytic leukemia is independent of genetic lesion. International Journal of Hematology, 2013, 98, 153-157.	1.6	18
18	Clinical-Grade Expanded Regulatory T Cells Are Enriched with Highly Suppressive Cells Producing IL-10, Granzyme B, and IL-35. Biology of Blood and Marrow Transplantation, 2020, 26, 2204-2210.	2.0	15

#	Article	IF	CITATIONS
19	NK Cells in Chronic Lymphocytic Leukemia and Their Therapeutic Implications. International Journal of Molecular Sciences, 2021, 22, 6665.	4.1	11
20	NOTCH and Graft-Versus-Host Disease. Frontiers in Immunology, 2018, 9, 1825.	4.8	10
21	Interleukin-7–Engineered Mesenchymal Cells: In Vitro Effects on Naive T-Cell Population. Biology of Blood and Marrow Transplantation, 2006, 12, 1250-1260.	2.0	9
22	A novelNOTCH1PEST domain mutation in a case of chronic lymphocytic leukemia. Leukemia and Lymphoma, 2013, 54, 1780-1782.	1.3	8
23	Interleukin 7-Engineered Stromal Cells: A New Approach for Hastening Naive T Cell Recruitment. Human Gene Therapy, 2005, 16, 752-764.	2.7	6
24	Ibrutinib Treatment of a Patient with Relapsing Chronic Lymphocytic Leukemia and Sustained Remission of Richter Syndrome. Tumori, 2017, 103, S37-S40.	1.1	4
25	NOTCH1 Activation Negatively Impacts on Chronic Lymphocytic Leukemia Outcome and Is Not Correlated to the NOTCH1 and IGHV Mutational Status. Frontiers in Oncology, 2021, 11, 668573.	2.8	4
26	Activated autologous T cells exert an anti-B-cell chronic lymphatic leukemia effect in vitro and in vivo. Cytotherapy, 2009, $11,86-96$.	0.7	3
27	CO-Culture with Mesenchymal Cells Modulates TGF-Beta/Smad And Mapk Pathways in T Regulatory Cells. Blood, 2008, 112, 676-676.	1.4	3
28	NOTCH1 inhibition prevents GvHD and maintains GvL effect in murine models. Bone Marrow Transplantation, 2021, 56, 2019-2023.	2.4	2
29	New mechanism of lymphoma-induced bone marrow aplasia. Annals of Hematology, 2016, 95, 1013-1015.	1.8	0
30	Exploring the radiosensitizing potential of AZD8931: a pilot study on the human LoVo colorectal cancer cell line. International Journal of Radiation Biology, 2020, 96, 1504-1512.	1.8	0