
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1362934/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 2006, 444, 756-760.	13.7	5,600
2	Bevacizumab Plus Irinotecan in Recurrent Glioblastoma Multiforme. Journal of Clinical Oncology, 2007, 25, 4722-4729.	0.8	1,285
3	Cancer stem cells in glioblastoma. Genes and Development, 2015, 29, 1203-1217.	2.7	1,248
4	Stem Cell–like Glioma Cells Promote Tumor Angiogenesis through Vascular Endothelial Growth Factor. Cancer Research, 2006, 66, 7843-7848.	0.4	1,239
5	Hypoxia-Inducible Factors Regulate Tumorigenic Capacity of Glioma Stem Cells. Cancer Cell, 2009, 15, 501-513.	7.7	1,196
6	Phase II Trial of Bevacizumab and Irinotecan in Recurrent Malignant Glioma. Clinical Cancer Research, 2007, 13, 1253-1259.	3.2	1,005
7	Glioblastoma Stem Cells Generate Vascular Pericytes to Support Vessel Function and Tumor Growth. Cell, 2013, 153, 139-152.	13.5	729
8	Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nature Cell Biology, 2015, 17, 170-182.	4.6	716
9	The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle, 2009, 8, 3274-3284.	1.3	708
10	Phase II Trial of Gefitinib in Recurrent Glioblastoma. Journal of Clinical Oncology, 2004, 22, 133-142.	0.8	677
11	Phosphorylation of EZH2 Activates STAT3 Signaling via STAT3 Methylation and Promotes Tumorigenicity of Glioblastoma Stem-like Cells. Cancer Cell, 2013, 23, 839-852.	7.7	665
12	Making a tumour's bed: glioblastoma stem cells and the vascular niche. Nature Reviews Cancer, 2007, 7, 733-736.	12.8	645
13	Integrin Alpha 6 Regulates Glioblastoma Stem Cells. Cell Stem Cell, 2010, 6, 421-432.	5.2	597
14	Challenges to curing primary brain tumours. Nature Reviews Clinical Oncology, 2019, 16, 509-520.	12.5	540
15	Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway. Cancer Cell, 2004, 5, 329-339.	7.7	509
16	Notch Promotes Radioresistance of Glioma Stem Cells Â. Stem Cells, 2010, 28, 17-28.	1.4	505
17	HIF Induces Human Embryonic Stem Cell Markers in Cancer Cells. Cancer Research, 2011, 71, 4640-4652.	0.4	473
18	Cancer Stem Cells in Radiation Resistance. Cancer Research, 2007, 67, 8980-8984.	0.4	464

2

#	Article	IF	CITATIONS
19	A Three-Dimensional Organoid Culture System Derived from Human Glioblastomas Recapitulates the Hypoxic Gradients and Cancer Stem Cell Heterogeneity of Tumors Found <i>In Vivo</i> . Cancer Research, 2016, 76, 2465-2477.	0.4	453
20	Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake. Nature Neuroscience, 2013, 16, 1373-1382.	7.1	408
21	Cancer Stem Cells: The Architects of the Tumor Ecosystem. Cell Stem Cell, 2019, 24, 41-53.	5.2	407
22	Adaptive Chromatin Remodeling Drives Glioblastoma Stem Cell Plasticity and Drug Tolerance. Cell Stem Cell, 2017, 20, 233-246.e7.	5.2	387
23	Targeting Cancer Stem Cells through L1CAM Suppresses Glioma Growth. Cancer Research, 2008, 68, 6043-6048.	0.4	376
24	Distinct requirements for Ras oncogenesis in human versus mouse cells. Genes and Development, 2002, 16, 2045-2057.	2.7	373
25	High-speed coherent Raman fingerprint imaging of biological tissues. Nature Photonics, 2014, 8, 627-634.	15.6	358
26	Autocrine VEGF–VEGFR2–Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth. Journal of Experimental Medicine, 2012, 209, 507-520.	4.2	356
27	c-Myc Is Required for Maintenance of Glioma Cancer Stem Cells. PLoS ONE, 2008, 3, e3769.	1.1	352
28	Irinotecan Therapy in Adults With Recurrent or Progressive Malignant Glioma. Journal of Clinical Oncology, 1999, 17, 1516-1516.	0.8	339
29	Phase II Study of Imatinib Mesylate Plus Hydroxyurea in Adults With Recurrent Glioblastoma Multiforme. Journal of Clinical Oncology, 2005, 23, 9359-9368.	0.8	313
30	Mitochondrial control by DRP1 in brain tumor initiating cells. Nature Neuroscience, 2015, 18, 501-510.	7.1	306
31	Glioblastoma stem cells: lessons from the tumor hierarchy in a lethal cancer. Genes and Development, 2019, 33, 591-609.	2.7	303
32	Targeting Interleukin 6 Signaling Suppresses Glioma Stem Cell Survival and Tumor Growth. Stem Cells, 2009, 27, 2393-2404.	1.4	300
33	Gene Expression Profiling and Genetic Markers in Glioblastoma Survival. Cancer Research, 2005, 65, 4051-4058.	0.4	298
34	Molecularly targeted therapy for malignant glioma. Cancer, 2007, 110, 13-24.	2.0	292
35	Chemotherapy activates cancer-associated fibroblasts to maintain colorectal cancer-initiating cells by IL-17A. Journal of Experimental Medicine, 2013, 210, 2851-2872.	4.2	288
36	Recent Advances in the Treatment of Malignant Astrocytoma. Journal of Clinical Oncology, 2006, 24, 1253-1265.	0.8	285

#	Article	IF	CITATIONS
37	Phase II Trial of Temozolomide Plus O ⁶ -Benzylguanine in Adults With Recurrent, Temozolomide-Resistant Malignant Glioma. Journal of Clinical Oncology, 2009, 27, 1262-1267.	0.8	280
38	Glioma Stem Cell Proliferation and Tumor Growth Are Promoted by Nitric Oxide Synthase-2. Cell, 2011, 146, 53-66.	13.5	280
39	Targeting glioma stem cells through combined BMI1 and EZH2 inhibition. Nature Medicine, 2017, 23, 1352-1361.	15.2	279
40	Preferential Iron Trafficking Characterizes Glioblastoma Stem-like Cells. Cancer Cell, 2015, 28, 441-455.	7.7	249
41	Phase II Trial of Temozolomide in Patients With Progressive Low-Grade Glioma. Journal of Clinical Oncology, 2003, 21, 646-651.	0.8	246
42	N-methyladenine DNA Modification in Glioblastoma. Cell, 2018, 175, 1228-1243.e20.	13.5	236
43	Nonreceptor Tyrosine Kinase BMX Maintains Self-Renewal and Tumorigenic Potential of Glioblastoma Stem Cells by Activating STAT3. Cancer Cell, 2011, 19, 498-511.	7.7	233
44	Phase II Trial of Murine ¹³¹ I-Labeled Antitenascin Monoclonal Antibody 81C6 Administered Into Surgically Created Resection Cavities of Patients With Newly Diagnosed Malignant Gliomas. Journal of Clinical Oncology, 2002, 20, 1389-1397.	0.8	227
45	Progress report of a Phase I study of the intracerebral microinfusion of a recombinant chimeric protein composed of transforming growth factor (TGF)-alpha and a mutated form of the Pseudomonas exotoxin termed PE-38 (TP-38) for the treatment of malignant brain tumors. Journal of Neuro-Oncology, 2003, 65, 27-35.	1.4	222
46	Tumour-associated macrophages secrete pleiotrophin to promote PTPRZ1 signalling in glioblastoma stem cells for tumour growth. Nature Communications, 2017, 8, 15080.	5.8	219
47	Deadly Teamwork: Neural Cancer Stem Cells and the Tumor Microenvironment. Cell Stem Cell, 2011, 8, 482-485.	5.2	218
48	The RNA m6A Reader YTHDF2 Maintains Oncogene Expression and Is a Targetable Dependency in Glioblastoma Stem Cells. Cancer Discovery, 2021, 11, 480-499.	7.7	218
49	Glioblastoma Stem Cells: Driving Resilience through Chaos. Trends in Cancer, 2020, 6, 223-235.	3.8	217
50	Development of novel targeted therapies in the treatment of malignant glioma. Nature Reviews Drug Discovery, 2004, 3, 430-446.	21.5	214
51	Brain Cancer Stem Cells Display Preferential Sensitivity to Akt Inhibition. Stem Cells, 2008, 26, 3027-3036.	1.4	207
52	Phase II trial of bevacizumab and erlotinib in patients with recurrent malignant glioma. Neuro-Oncology, 2010, 12, 1300-1310.	0.6	207
53	Functional Enhancers Shape Extrachromosomal Oncogene Amplifications. Cell, 2019, 179, 1330-1341.e13.	13.5	206
54	Cancer Stem Cells: Targeting the Roots of Cancer, Seeds of Metastasis, and Sources of Therapy Resistance. Cancer Research, 2015, 75, 924-929.	0.4	203

#	Article	IF	CITATIONS
55	Cancer Stem Cell-Secreted Macrophage Migration Inhibitory Factor Stimulates Myeloid Derived Suppressor Cell Function and Facilitates Glioblastoma Immune Evasion. Stem Cells, 2016, 34, 2026-2039.	1.4	189
56	AMPK/FIS1-Mediated Mitophagy Is Required for Self-Renewal of Human AML Stem Cells. Cell Stem Cell, 2018, 23, 86-100.e6.	5.2	189
57	Phase 1 Trial of Gefitinib Plus Sirolimus in Adults with Recurrent Malignant Glioma. Clinical Cancer Research, 2006, 12, 860-868.	3.2	187
58	Salvage Radioimmunotherapy With Murine Iodine-131–Labeled Antitenascin Monoclonal Antibody 81C6 for Patients With Recurrent Primary and Metastatic Malignant Brain Tumors: Phase II Study Results. Journal of Clinical Oncology, 2006, 24, 115-122.	0.8	186
59	Reciprocal Signaling between Glioblastoma Stem Cells and Differentiated Tumor Cells Promotes Malignant Progression. Cell Stem Cell, 2018, 22, 514-528.e5.	5.2	185
60	Cancer Stem Cell-Specific Scavenger Receptor CD36 Drives Glioblastoma Progression. Stem Cells, 2014, 32, 1746-1758.	1.4	182
61	Potential therapeutic implications of cancer stem cells in glioblastoma. Biochemical Pharmacology, 2010, 80, 654-665.	2.0	179
62	Zika virus has oncolytic activity against glioblastoma stem cells. Journal of Experimental Medicine, 2017, 214, 2843-2857.	4.2	179
63	Phase II Trial of Carmustine Plus O6-Benzylguanine for Patients With Nitrosourea-Resistant Recurrent or Progressive Malignant Glioma. Journal of Clinical Oncology, 2002, 20, 2277-2283.	0.8	178
64	Cancer stem cells. Medicine (United States), 2016, 95, S2-S7.	0.4	176
65	Combination therapy of inhibitors of epidermal growth factor receptor/vascular endothelial growth factor receptor 2 (AEE788) and the mammalian target of rapamycin (RAD001) offers improved glioblastoma tumor growth inhibition. Molecular Cancer Therapeutics, 2005, 4, 101-12.	1.9	176
66	Receptor Channel TRPC6 Is a Key Mediator of Notch-Driven Glioblastoma Growth and Invasiveness. Cancer Research, 2010, 70, 418-427.	0.4	173
67	Targeting Glioblastoma Stem Cells through Disruption of the Circadian Clock. Cancer Discovery, 2019, 9, 1556-1573.	7.7	172
68	Therapeutic targeting of ependymoma as informed by oncogenic enhancer profiling. Nature, 2018, 553, 101-105.	13.7	170
69	Elevated invasive potential of glioblastoma stem cells. Biochemical and Biophysical Research Communications, 2011, 406, 643-648.	1.0	168
70	Targeting Glioma Stem Cell-Derived Pericytes Disrupts the Blood-Tumor Barrier and Improves Chemotherapeutic Efficacy. Cell Stem Cell, 2017, 21, 591-603.e4.	5.2	168
71	Bevacizumab Plus Irinotecan in Recurrent WHO Grade 3 Malignant Gliomas. Clinical Cancer Research, 2008, 14, 7068-7073.	3.2	166
72	Brain tumor stem cells: Molecular characteristics and their impact on therapy. Molecular Aspects of Medicine, 2014, 39, 82-101.	2.7	164

#	Article	IF	CITATIONS
73	Transcription elongation factors represent in vivo cancer dependencies in glioblastoma. Nature, 2017, 547, 355-359.	13.7	156
74	Purine synthesis promotes maintenance of brain tumor initiating cells in glioma. Nature Neuroscience, 2017, 20, 661-673.	7.1	153
75	Resistance to Tyrosine Kinase Inhibition by Mutant Epidermal Growth Factor Receptor Variant III Contributes to the Neoplastic Phenotype of Glioblastoma Multiforme. Clinical Cancer Research, 2004, 10, 3216-3224.	3.2	151
76	Laminin alpha 2 enables glioblastoma stem cell growth. Annals of Neurology, 2012, 72, 766-778.	2.8	151
77	SB-431542, a small molecule transforming growth factor-beta-receptor antagonist, inhibits human glioma cell line proliferation and motility. Molecular Cancer Therapeutics, 2004, 3, 737-45.	1.9	150
78	Three-dimensional bioprinted glioblastoma microenvironments model cellular dependencies and immune interactions. Cell Research, 2020, 30, 833-853.	5.7	149
79	L1CAM regulates DNA damage checkpoint response of glioblastoma stem cells through NBS1. EMBO Journal, 2011, 30, 800-813.	3.5	146
80	MET Signaling Regulates Glioblastoma Stem Cells. Cancer Research, 2012, 72, 3828-3838.	0.4	145
81	Single-Cell Transcriptomics Uncovers Clial Progenitor Diversity and Cell Fate Determinants during Development and Gliomagenesis. Cell Stem Cell, 2019, 24, 707-723.e8.	5.2	145
82	Deubiquitylase HAUSP stabilizes REST and promotes maintenance of neural progenitor cells. Nature Cell Biology, 2011, 13, 142-152.	4.6	139
83	Bone-related Genes Expressed in Advanced Malignancies Induce Invasion and Metastasis in a Genetically Defined Human Cancer Model. Journal of Biological Chemistry, 2003, 278, 15951-15957.	1.6	134
84	The mitotic kinesin KIF11 is a driver of invasion, proliferation, and self-renewal in glioblastoma. Science Translational Medicine, 2015, 7, 304ra143.	5.8	130
85	Oncogene Amplification in Growth Factor Signaling Pathways Renders Cancers Dependent on Membrane Lipid Remodeling. Cell Metabolism, 2019, 30, 525-538.e8.	7.2	130
86	A Randomized Trial of a Multifactorial Strategy to Prevent Serious Fall Injuries. New England Journal of Medicine, 2020, 383, 129-140.	13.9	129
87	Chemotherapy and Cancer Stem Cells. Cell Stem Cell, 2007, 1, 353-355.	5.2	128
88	Cancer stem cells in gliomas: Identifying and understanding the apex cell in cancer's hierarchy. Glia, 2011, 59, 1148-1154.	2.5	128
89	Zika Virus Targets Glioblastoma Stem Cells through a SOX2-Integrin αvβ5 Axis. Cell Stem Cell, 2020, 26, 187-204.e10.	5.2	126
90	Phase I Trial of Carmustine Plus O6-Benzylguanine for Patients With Recurrent or Progressive Malignant Glioma. Journal of Clinical Oncology, 2000, 18, 3522-3528.	0.8	125

#	Article	IF	CITATIONS
91	Direct In Vivo Evidence for Tumor Propagation by Glioblastoma Cancer Stem Cells. PLoS ONE, 2011, 6, e24807.	1.1	125
92	Biology of Glioma Cancer Stem Cells. Molecules and Cells, 2009, 28, 7-12.	1.0	124
93	Deubiquitinase USP13 maintains glioblastoma stem cells by antagonizing FBXL14-mediated Myc ubiquitination. Journal of Experimental Medicine, 2017, 214, 245-267.	4.2	123
94	Glioma cancer stem cells secrete Gremlin1 to promote their maintenance within the tumor hierarchy. Genes and Development, 2014, 28, 1085-1100.	2.7	122
95	Glioma Stem Cell–Specific Superenhancer Promotes Polyunsaturated Fatty-Acid Synthesis to Support EGFR Signaling. Cancer Discovery, 2019, 9, 1248-1267.	7.7	120
96	New treatment strategies for malignant gliomas. Expert Review of Anticancer Therapy, 2006, 6, 1087-1104.	1.1	117
97	Targeting A20 Decreases Glioma Stem Cell Survival and Tumor Growth. PLoS Biology, 2010, 8, e1000319.	2.6	117
98	Phase II trial of irinotecan plus celecoxib in adults with recurrent malignant glioma. Cancer, 2005, 103, 329-338.	2.0	116
99	Using a Stem Cell–Based Signature to Guide Therapeutic Selection in Cancer. Cancer Research, 2011, 71, 1772-1780.	0.4	112
100	Ibrutinib inactivates BMX-STAT3 in glioma stem cells to impair malignant growth and radioresistance. Science Translational Medicine, 2018, 10, .	5.8	112
101	Targeting pyrimidine synthesis accentuates molecular therapy response in glioblastoma stem cells. Science Translational Medicine, 2019, 11, .	5.8	112
102	Dual Role of WISP1 in maintaining glioma stem cells and tumor-supportive macrophages in glioblastoma. Nature Communications, 2020, 11, 3015.	5.8	111
103	High-Dose Chemotherapy With Autologous Stem-Cell Rescue in Children and Adults With Newly Diagnosed Pineoblastomas. Journal of Clinical Oncology, 2003, 21, 2187-2191.	0.8	110
104	Leptin deficiency suppresses MMTV-Wnt-1 mammary tumor growth in obese mice and abrogates tumor initiating cell survival. Endocrine-Related Cancer, 2011, 18, 491-503.	1.6	106
105	<i>miR-218</i> opposes a critical RTK-HIF pathway in mesenchymal glioblastoma. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 291-296.	3.3	101
106	Transforming Growth Factor-Î ² -mediated p15INK4BInduction and Growth Inhibition in Astrocytes Is SMAD3-dependent and a Pathway Prominently Altered in Human Glioma Cell Lines. Journal of Biological Chemistry, 1999, 274, 35053-35058.	1.6	100
107	Differential Connexin Function Enhances Self-Renewal in Glioblastoma. Cell Reports, 2015, 11, 1031-1042.	2.9	100
108	Sema3C Promotes the Survival and Tumorigenicity of Glioma Stem Cells through Rac1 Activation. Cell Reports, 2014, 9, 1812-1826.	2.9	99

#	Article	IF	CITATIONS
109	Secreted Protein Acidic, Rich in Cysteine (SPARC), Mediates Cellular Survival of Gliomas through AKT Activation. Journal of Biological Chemistry, 2004, 279, 52200-52209.	1.6	97
110	Platelet-derived growth factor receptors differentially inform intertumoral and intratumoral heterogeneity. Genes and Development, 2012, 26, 1247-1262.	2.7	96
111	A pilot study: 1311-Antitenascin monoclonal antibody 81c6 to deliver a 44-Gy resection cavity boost. Neuro-Oncology, 2008, 10, 182-189.	0.6	95
112	Tumor Cells Upregulate Normoxic HIF-1α in Response to Doxorubicin. Cancer Research, 2013, 73, 6230-6242.	0.4	95
113	ZD6474, a Novel Tyrosine Kinase Inhibitor of Vascular Endothelial Growth Factor Receptor and Epidermal Growth Factor Receptor, Inhibits Tumor Growth of Multiple Nervous System Tumors. Clinical Cancer Research, 2005, 11, 8145-8157.	3.2	94
114	Nicotinamide metabolism regulates glioblastoma stem cell maintenance. JCI Insight, 2017, 2, .	2.3	93
115	Meningioma DNA methylation groups identify biological drivers and therapeutic vulnerabilities. Nature Genetics, 2022, 54, 649-659.	9.4	93
116	Phase II study of imatinib mesylate and hydroxyurea for recurrent grade III malignant gliomas. Journal of Neuro-Oncology, 2007, 83, 53-60.	1.4	92
117	Designer Therapies for Glioblastoma Multiforme. Annals of the New York Academy of Sciences, 2008, 1142, 108-132.	1.8	91
118	MYC-Regulated Mevalonate Metabolism Maintains Brain Tumor–Initiating Cells. Cancer Research, 2017, 77, 4947-4960.	0.4	91
119	MLL5 Orchestrates a Cancer Self-Renewal State by Repressing the Histone Variant H3.3 and Globally Reorganizing Chromatin. Cancer Cell, 2015, 28, 715-729.	7.7	90
120	Chromatin landscapes reveal developmentally encoded transcriptional states that define human glioblastoma. Journal of Experimental Medicine, 2019, 216, 1071-1090.	4.2	89
121	Turning Cancer Stem Cells Inside Out: An Exploration of Glioma Stem Cell Signaling Pathways. Journal of Biological Chemistry, 2009, 284, 16705-16709.	1.6	87
122	Leptin receptor maintains cancer stem-like properties in triple negative breast cancer cells. Endocrine-Related Cancer, 2013, 20, 797-808.	1.6	87
123	Diagnosis and Treatment of High-Grade Astrocytoma. Neurologic Clinics, 2007, 25, 1111-1139.	0.8	86
124	β-Catenin/POU5F1/SOX2 Transcription Factor Complex Mediates IGF-I Receptor Signaling and Predicts Poor Prognosis in Lung Adenocarcinoma. Cancer Research, 2013, 73, 3181-3189.	0.4	85
125	Phase II study of metronomic chemotherapy with bevacizumab for recurrent glioblastoma after progression on bevacizumab therapy. Journal of Neuro-Oncology, 2011, 103, 371-379.	1.4	83
126	Profilin-1 phosphorylation directs angiocrine expression and glioblastoma progression throughÂHIF-1α accumulation. Nature Cell Biology, 2014, 16, 445-456.	4.6	83

#	Article	IF	CITATIONS
127	Lineage-specific splicing of a brain-enriched alternative exon promotes glioblastoma progression. Journal of Clinical Investigation, 2014, 124, 2861-2876.	3.9	83
128	Hyperthermia Sensitizes Glioma Stem-like Cells to Radiation by Inhibiting AKT Signaling. Cancer Research, 2015, 75, 1760-1769.	0.4	82
129	Cancer stem cells. Medicine (United States), 2016, 95, S1.	0.4	82
130	Chemokine CXCL12 in neurodegenerative diseases: an SOS signal for stem cell-based repair. Trends in Neurosciences, 2012, 35, 619-628.	4.2	81
131	Metabolic Regulation of the Epigenome Drives Lethal Infantile Ependymoma. Cell, 2020, 181, 1329-1345.e24.	13.5	79
132	CRISPR Screening of CAR T Cells and Cancer Stem Cells Reveals Critical Dependencies for Cell-Based Therapies. Cancer Discovery, 2021, 11, 1192-1211.	7.7	78
133	Phase I trial of irinotecan plus temozolomide in adults with recurrent malignant glioma. Cancer, 2005, 104, 1478-1486.	2.0	76
134	Glioma Stem Cell Maintenance: The Role of the Microenvironment. Current Pharmaceutical Design, 2011, 17, 2386-2401.	0.9	76
135	High-Throughput Flow Cytometry Screening Reveals a Role for Junctional Adhesion Molecule A as a Cancer Stem Cell Maintenance Factor. Cell Reports, 2014, 6, 117-129.	2.9	76
136	An epigenetic gateway to brain tumor cell identity. Nature Neuroscience, 2016, 19, 10-19.	7.1	76
137	Development of a Fluorescent Reporter System to Delineate Cancer Stem Cells in Triple-Negative Breast Cancer. Stem Cells, 2015, 33, 2114-2125.	1.4	72
138	Erythropoietin Receptor Signaling through STAT3 Is Required for Glioma Stem Cell Maintenance. Genes and Cancer, 2010, 1, 50-61.	0.6	71
139	Twisted tango: brain tumor neurovascular interactions. Nature Neuroscience, 2011, 14, 1375-1381.	7.1	70
140	The evolving landscape of glioblastoma stem cells. Current Opinion in Neurology, 2013, 26, 701-707.	1.8	69
141	A C19MC-LIN28A-MYCN Oncogenic Circuit Driven by Hijacked Super-enhancers Is a Distinct Therapeutic Vulnerability in ETMRs: A Lethal Brain Tumor. Cancer Cell, 2019, 36, 51-67.e7.	7.7	69
142	Biomaterials and 3D Bioprinting Strategies to Model Glioblastoma and the Blood–Brain Barrier. Advanced Materials, 2021, 33, e2004776.	11.1	66
143	Epitranscriptomic editing of the RNA N6-methyladenosine modification by dCasRx conjugated methyltransferase and demethylase. Nucleic Acids Research, 2021, 49, 7361-7374.	6.5	66
144	Phase I study of sunitinib and irinotecan for patients with recurrent malignant glioma. Journal of Neuro-Oncology, 2011, 105, 621-627.	1.4	62

#	Article	IF	CITATIONS
145	Pharmacological Targeting of the Histone Chaperone Complex FACT Preferentially Eliminates Glioblastoma Stem Cells and Prolongs Survival in Preclinical Models. Cancer Research, 2016, 76, 2432-2442.	0.4	62
146	Efficacy of high-dose chemotherapy or standard salvage therapy in patients with recurrent medulloblastoma. Neuro-Oncology, 2008, 10, 745-751.	0.6	61
147	Transferrin receptor-1 and ferritin heavy and light chains in astrocytic brain tumors: Expression and prognostic value. PLoS ONE, 2017, 12, e0182954.	1.1	61
148	Altered lipid metabolism marks glioblastoma stem and non-stem cells in separate tumor niches. Acta Neuropathologica Communications, 2021, 9, 101.	2.4	60
149	Phase II Trial of Gliadel plus <i>O</i> 6-Benzylguanine in Adults with Recurrent Glioblastoma Multiforme. Clinical Cancer Research, 2009, 15, 1064-1068.	3.2	59
150	Chromosomal Instability Affects the Tumorigenicity of Glioblastoma Tumor-Initiating Cells. Cancer Discovery, 2016, 6, 532-545.	7.7	59
151	Tetraspanin CD9 stabilizes gp130 by preventing its ubiquitin-dependent lysosomal degradation to promote STAT3 activation in glioma stem cells. Cell Death and Differentiation, 2017, 24, 167-180.	5.0	59
152	Aptamer Identification of Brain Tumor–Initiating Cells. Cancer Research, 2013, 73, 4923-4936.	0.4	57
153	Mitochondrial NIX Promotes Tumor Survival in the Hypoxic Niche of Glioblastoma. Cancer Research, 2019, 79, 5218-5232.	0.4	57
154	AAL881, a Novel Small Molecule Inhibitor of RAF and Vascular Endothelial Growth Factor Receptor Activities, Blocks the Growth of Malignant Glioma. Cancer Research, 2006, 66, 8722-8730.	0.4	54
155	CDC20 maintains tumor initiating cells. Oncotarget, 2015, 6, 13241-13254.	0.8	53
156	RBPJ maintains brain tumor–initiating cells through CDK9-mediated transcriptional elongation. Journal of Clinical Investigation, 2016, 126, 2757-2772.	3.9	52
157	Glioblastoma on a microfluidic chip: Generating pseudopalisades and enhancing aggressiveness through blood vessel obstruction events. Neuro-Oncology, 2017, 19, now230.	0.6	51
158	Transforming growth factor-? signaling in cancer. Microscopy Research and Technique, 2001, 52, 363-373.	1.2	50
159	FBXO44 promotes DNA replication-coupled repetitive element silencing in cancer cells. Cell, 2021, 184, 352-369.e23.	13.5	50
160	NDRG4 Is Required for Cell Cycle Progression and Survival in Glioblastoma Cells. Journal of Biological Chemistry, 2009, 284, 25160-25169.	1.6	49
161	Improving the radiosensitivity of radioresistant and hypoxic glioblastoma. Future Oncology, 2010, 6, 1591-1601.	1.1	48
162	The Zinc Finger Transcription Factor ZFX Is Required for Maintaining the Tumorigenic Potential of Glioblastoma Stem Cells. Stem Cells, 2014, 32, 2033-2047.	1.4	47

#	Article	IF	CITATIONS
163	Zika virus oncolytic activity requires CD8+ T cells and is boosted by immune checkpoint blockade. JCI Insight, 2021, 6, .	2.3	46
164	New approaches to primary brain tumor treatment. Anti-Cancer Drugs, 2006, 17, 1003-1016.	0.7	45
165	The ID1-CULLIN3 Axis Regulates Intracellular SHH and WNT Signaling in Glioblastoma Stem Cells. Cell Reports, 2016, 16, 1629-1641.	2.9	44
166	Messenger RNA Methylation Regulates Glioblastoma Tumorigenesis. Cancer Cell, 2017, 31, 474-475.	7.7	44
167	The combination of novel low molecular weight inhibitors of RAF (LBT613) and target of rapamycin (RAD001) decreases glioma proliferation and invasion. Molecular Cancer Therapeutics, 2007, 6, 2449-2457.	1.9	43
168	Phase 2 trial of BCNU plus irinotecan in adults with malignant glioma. Neuro-Oncology, 2004, 6, 134-144.	0.6	42
169	Loss of Phosphatase and Tensin Homologue Increases Transforming Growth Factor β–Mediated Invasion with Enhanced SMAD3 Transcriptional Activity. Cancer Research, 2005, 65, 11276-11281.	0.4	42
170	Safety and pharmacokinetics of dose-intensive imatinib mesylate plus temozolomide: Phase 1 trial in adults with malignant glioma. Neuro-Oncology, 2008, 10, 330-340.	0.6	41
171	Phase 1 trial of dasatinib plus erlotinib in adults with recurrent malignant glioma. Journal of Neuro-Oncology, 2012, 108, 499-506.	1.4	41
172	Arsenic trioxide disrupts glioma stem cells via promoting PML degradation to inhibit tumor growth. Oncotarget, 2015, 6, 37300-37315.	0.8	41
173	Antiangiogenic Therapy in Malignant Glioma: Promise and Challenge. Current Pharmaceutical Design, 2007, 13, 3545-3558.	0.9	40
174	Brain cancer stem cells: resilience through adaptive plasticity and hierarchical heterogeneity. Nature Reviews Cancer, 2022, 22, 497-514.	12.8	40
175	Phase I trial of temozolomide plus O6-benzylguanine 5-day regimen with recurrent malignant glioma. Neuro-Oncology, 2009, 11, 556-561.	0.6	39
176	Role of Cysteine-rich 61 Protein (CCN1) in Macrophage-mediated Oncolytic Herpes Simplex Virus Clearance. Molecular Therapy, 2014, 22, 1678-1687.	3.7	38
177	Targeting glioblastoma signaling and metabolism with a re-purposed brain-penetrant drug. Cell Reports, 2021, 37, 109957.	2.9	38
178	Coordination of self-renewal in glioblastoma by integration of adhesion and microRNA signaling. Neuro-Oncology, 2016, 18, 656-666.	0.6	37
179	Adipocytes promote breast tumorigenesis through TAZ-dependent secretion of Resistin. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33295-33304.	3.3	37
180	Inhibiting DNA-PK induces glioma stem cell differentiation and sensitizes glioblastoma to radiation in mice. Science Translational Medicine, 2021, 13, .	5.8	37

#	Article	IF	CITATIONS
181	SATB2 drives glioblastoma growth by recruiting CBP to promote FOXM1 expression in glioma stem cells. EMBO Molecular Medicine, 2020, 12, e12291.	3.3	35
182	Endothelial Expression of TNF Receptor-1 Generates a Proapoptotic Signal Inhibited by Integrin α6β1 in Glioblastoma. Cancer Research, 2012, 72, 1428-1437.	0.4	34
183	Molecular targeting of TRF2 suppresses the growth and tumorigenesis of glioblastoma stem cells. Glia, 2014, 62, 1687-1698.	2.5	34
184	PI3KÎ ³ inhibition suppresses microglia/TAM accumulation in glioblastoma microenvironment to promote exceptional temozolomide response. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	33
185	Second Messenger Systems in Human Gliomas. Archives of Pathology and Laboratory Medicine, 2007, 131, 1585-1590.	1.2	33
186	Novel human IgG2b/murine chimeric antitenascin monoclonal antibody construct radiolabeled with 131I and administered into the surgically created resection cavity of patients with malignant glioma: phase I trial results. Journal of Nuclear Medicine, 2006, 47, 912-8.	2.8	32
187	Mechanism of Action of Methotrexate Against Zika Virus. Viruses, 2019, 11, 338.	1.5	31
188	Type I Interferon Regulates a Coordinated Gene Network to Enhance Cytotoxic T Cell–Mediated Tumor Killing. Cancer Discovery, 2020, 10, 382-393.	7.7	31
189	β2-Microglobulin Maintains Clioblastoma Stem Cells and Induces M2-like Polarization of Tumor-Associated Macrophages. Cancer Research, 2022, 82, 3321-3334.	0.4	31
190	Squelching glioblastoma stem cells by targeting REST for proteasomal degradation. Trends in Neurosciences, 2009, 32, 559-565.	4.2	30
191	Lyn Facilitates Glioblastoma Cell Survival under Conditions of Nutrient Deprivation by Promoting Autophagy. PLoS ONE, 2013, 8, e70804.	1.1	30
192	The Meningioma Enhancer Landscape Delineates Novel Subgroups and Drives Druggable Dependencies. Cancer Discovery, 2020, 10, 1722-1741.	7.7	30
193	Glioma stem-like cells evade interferon suppression through MBD3/NuRD complex–mediated STAT1 downregulation. Journal of Experimental Medicine, 2020, 217, .	4.2	30
194	Chromatin remodeler HELLS maintains glioma stem cells through E2F3 and MYC. JCI Insight, 2019, 4, .	2.3	30
195	Transcription Elongation Machinery Is a Druggable Dependency and Potentiates Immunotherapy in Glioblastoma Stem Cells. Cancer Discovery, 2022, 12, 502-521.	7.7	29
196	Seeing is Believing: Are Cancer Stem Cells the Loch Ness Monster of Tumor Biology?. Stem Cell Reviews and Reports, 2011, 7, 227-237.	5.6	28
197	New Advances and Challenges of Targeting Cancer Stem Cells. Cancer Research, 2017, 77, 5222-5227.	0.4	28
198	Brd4-bound enhancers drive cell-intrinsic sex differences in glioblastoma. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	28

#	Article	IF	CITATIONS
199	Direct contact with perivascular tumor cells enhances integrin αvβ3 signaling and migration of endothelial cells. Oncotarget, 2016, 7, 43852-43867.	0.8	28
200	ADAR1-mediated RNA editing links ganglioside catabolism to glioblastoma stem cell maintenance. Journal of Clinical Investigation, 2022, 132, .	3.9	27
201	Phase II study of Gleevec plus hydroxyurea in adults with progressive or recurrent lowâ€grade glioma. Cancer, 2012, 118, 4759-4767.	2.0	26
202	Multiplex Flow Cytometry Barcoding and Antibody Arrays Identify Surface Antigen Profiles of Primary and Metastatic Colon Cancer Cell Lines. PLoS ONE, 2013, 8, e53015.	1.1	26
203	Inhibition of ID1–BMPR2 Intrinsic Signaling Sensitizes Glioma Stem Cells to Differentiation Therapy. Clinical Cancer Research, 2018, 24, 383-394.	3.2	26
204	Cadherin-11 Regulates Motility in Normal Cortical Neural Precursors and Glioblastoma. PLoS ONE, 2013, 8, e70962.	1.1	26
205	Malignant glioma drug discovery – targeting protein kinases. Expert Opinion on Drug Discovery, 2007, 2, 1-17.	2.5	25
206	Plasma cells shape the mesenchymal identity of ovarian cancers through transfer of exosome-derived microRNAs. Science Advances, 2021, 7, .	4.7	25
207	Phase 1 trial of irinotecan plus BCNU in patients with progressive or recurrent malignant glioma. Neuro-Oncology, 2004, 6, 145-153.	0.6	24
208	Treatment and management of malignant gliomas. Nature Reviews Clinical Oncology, 2010, 7, 75-77.	12.5	24
209	Outcome after bevacizumab clinical trial therapy among recurrent grade III malignant glioma patients. Journal of Neuro-Oncology, 2012, 107, 213-221.	1.4	24
210	A posttranslational modification of the mitotic kinesin Eg5 that enhances its mechanochemical coupling and alters its mitotic function. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1779-E1788.	3.3	24
211	Treatment of Glioblastoma Using Multicomponent Silica Nanoparticles. Advanced Therapeutics, 2019, 2, 1900118.	1.6	23
212	Development of a Sox2 reporter system modeling cellular heterogeneity in glioma. Neuro-Oncology, 2015, 17, 361-371.	0.6	22
213	The p38 signaling pathway mediates quiescence of glioma stem cells by regulating epidermal growth factor receptor trafficking. Oncotarget, 2017, 8, 33316-33328.	0.8	22
214	APOE4 -VLDL Inhibits the HDL-Activated Phosphatidylinositol 3-Kinase/Akt Pathway via the Phosphoinositol Phosphatase SHIP2. Circulation Research, 2006, 99, 829-836.	2.0	21
215	Genomics informs glioblastoma biology. Nature Genetics, 2013, 45, 1105-1107.	9.4	21
216	USP33 deubiquitinates and stabilizes HIFâ€2alpha to promote hypoxia response in glioma stem cells. EMBO Journal, 2022, 41, e109187.	3.5	21

#	Article	IF	CITATIONS
217	Decoding the cancer stem cell hypothesis in glioblastoma. CNS Oncology, 2013, 2, 319-330.	1.2	20
218	The Lgr5 transgene is expressed specifically in glycinergic amacrine cells in the mouse retina. Experimental Eye Research, 2014, 119, 106-110.	1.2	19
219	Feedback circuitry between <i>miR-218</i> repression and RTK activation in glioblastoma. Science Signaling, 2015, 8, ra42.	1.6	19
220	The dystroglycan receptor maintains glioma stem cells in the vascular niche. Acta Neuropathologica, 2019, 138, 1033-1052.	3.9	19
221	Glioma Development: Where Did It All Go Wrong?. Cell, 2011, 146, 187-188.	13.5	18
222	Protein sumoylation with SUMO1 promoted by Pin1 in glioma stem cells augments glioblastoma malignancy. Neuro-Oncology, 2020, 22, 1809-1821.	0.6	18
223	A FBXO7/EYA2-SCFFBXW7 axis promotes AXL-mediated maintenance of mesenchymal and immune evasion phenotypes of cancer cells. Molecular Cell, 2022, 82, 1123-1139.e8.	4.5	18
224	Bacterial flavohemoglobin: a molecular tool to probe mammalian nitric oxide biology. BioTechniques, 2011, 50, 41-45.	0.8	17
225	CHMP2A regulates tumor sensitivity to natural killer cell-mediated cytotoxicity. Nature Communications, 2022, 13, 1899.	5.8	16
226	ZNF555 protein binds to transcriptional activator site of 4qA allele and <i>ANT1</i> : potential implication in Facioscapulohumeral dystrophy. Nucleic Acids Research, 2015, 43, 8227-8242.	6.5	15
227	Poly(ADP-Ribose) Polymerase Inhibition Sensitizes Colorectal Cancer-Initiating Cells to Chemotherapy. Stem Cells, 2019, 37, 42-53.	1.4	15
228	Effect of a Multifactorial Fall Injury Prevention Intervention on Patient Wellâ€Being: The <scp>STRIDE</scp> Study. Journal of the American Geriatrics Society, 2021, 69, 173-179.	1.3	15
229	Phase II study of Cloretazine for the treatment of adults with recurrent glioblastoma multiforme1. Neuro-Oncology, 2007, 9, 70-74.	0.6	14
230	Lgr5 Marks Post-Mitotic, Lineage Restricted Cerebellar Granule Neurons during Postnatal Development. PLoS ONE, 2014, 9, e114433.	1.1	14
231	Glioblastoma stem cells reprogram chromatin in vivo to generate selective therapeutic dependencies on DPY30 and phosphodiesterases. Science Translational Medicine, 2022, 14, eabf3917.	5.8	13
232	The Quest for Self-Identity: Not All Cancer Stem Cells Are the Same. Clinical Cancer Research, 2012, 18, 3495-3498.	3.2	12
233	The Tailless Root of Glioma: Cancer Stem Cells. Cell Stem Cell, 2014, 15, 114-116.	5.2	12
234	Pharmacokinetic drug interaction between AEE788 and RAD001 causing thrombocytopenia in patients with glioblastoma. Cancer Chemotherapy and Pharmacology, 2012, 69, 281-287.	1.1	11

#	Article	IF	CITATIONS
235	Constitutive Ras signaling and Ink4a/Arf inactivation cooperate during the development of B-ALL in mice. Blood Advances, 2017, 1, 2361-2374.	2.5	11
236	Dynamic and transient cancer stem cells nurture melanoma. Nature Medicine, 2010, 16, 758-758.	15.2	10
237	Activity of Selected Nucleoside Analogue ProTides against Zika Virus in Human Neural Stem Cells. Viruses, 2019, 11, 365.	1.5	10
238	Molecularly targeted therapy in neuro-oncology. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 104, 255-278.	1.0	9
239	Phage Display Targeting Identifies Eya1 as a Regulator of Glioblastoma Stem Cell Maintenance and Proliferation. Stem Cells, 2021, 39, 853-865.	1.4	9
240	Targeting EYA2 tyrosine phosphatase activity in glioblastoma stem cells induces mitotic catastrophe. Journal of Experimental Medicine, 2021, 218, .	4.2	9
241	Mitotic Control of Cancer Stem Cells. Cancer Discovery, 2013, 3, 141-144.	7.7	7
242	Growth Factor Receptors Define Cancer Hierarchies. Cancer Cell, 2013, 23, 135-137.	7.7	6
243	A delicate initiation: Lipolysis of lipid droplets fuels glioblastoma. Molecular Cell, 2021, 81, 2686-2687.	4.5	6
244	Looking in the miR-ror: TGF-β–mediated activation of NF-κB in glioma. Journal of Clinical Investigation, 2012, 122, 3473-3475.	3.9	6
245	Zika Virus Is Transmitted in Neural Progenitor Cells via Cell-to-Cell Spread, and Infection Is Inhibited by the Autophagy Inducer Trehalose. Journal of Virology, 2021, 95, .	1.5	5
246	A vaccine for glioma. Nature Cancer, 2021, 2, 584-586.	5.7	5
247	Leveraging Allele-Specific Expression for Therapeutic Response Gene Discovery in Glioblastoma. Cancer Research, 2022, 82, 377-390.	0.4	5
248	Molecular Targeting of Neural Cancer Stem Cells: TTAGGG, You're It!. Clinical Cancer Research, 2011, 17, 3-5.	3.2	4
249	Holding on to stemness. Nature Cell Biology, 2012, 14, 450-452.	4.6	4
250	TRP-ing up brain tumors. Nature Medicine, 2012, 18, 1175-1176.	15.2	4
251	Patient-derived explants as tumor models. Cancer Cell, 2022, 40, 348-350.	7.7	3
252	The cancer stem cell: a new therapeutic paradigm?. Expert Review of Anticancer Therapy, 2006, 6, 1531-1533.	1.1	2

#	Article	IF	CITATIONS
253	Changing the fate of cancer, one splice at a time. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14510-14511.	3.3	2
254	"PEAR-ing―Genomic and Epigenomic Analyses for Cancer Gene Discovery. Cancer Discovery, 2015, 5, 1018-1020.	7.7	1
255	SUFU: The Jekyll and Hyde of the Cerebellum. Developmental Cell, 2019, 48, 131-132.	3.1	1
256	Reprogramming the microenvironment: tricks of tumor-derived astrocytes. Cell Research, 2020, 30, 633-634.	5.7	1
257	Cancer Cell Signaling: Methods and Protocols. Neuro-Oncology, 2003, 5, 277-278.	0.6	0
258	Blood vessels in neurological development and disease: more than silent spectators. Future Neurology, 2010, 5, 779-781.	0.9	0
259	Synthesis and Preliminary Evaluation of n.c.a. Iodoquine: A Novel Radiotracer with High Uptake in Cells with High ALDH1 Expression. Current Radiopharmaceuticals, 2012, 5, 47-58.	0.3	0
260	SC-13 * ID1-CULLIN3 AXIS REGULATES STEM CELL SIGNALING IN GLIOMA. Neuro-Oncology, 2014, 16, v199-v199.	0.6	0
261	SC-32 * TARGETING PROLIFERATION AND INVASION IN GLIOBLASTOMA VIA MITOTIC KINESINS. Neuro-Oncology, 2014, 16, v203-v204.	0.6	0
262	CBIO-15NON-METABOLIC FUNCTION OF PHOSPHOFRUCTOKINASE-1 IN GLIOBLASTOMA MAINTENANCE. Neuro-Oncology, 2015, 17, v58.1-v58.	0.6	0
263	Growth Factor Receptor Fusions Predict Therapeutic Sensitivity. Clinical Cancer Research, 2015, 21, 3105-3107.	3.2	0
264	Lending an â€~ELPing hand to tumor initiation. Journal of Experimental Medicine, 2015, 212, 1989-1989.	4.2	0
265	GENE-32. ACTIVE CHROMATIN REGULATORY MAPS IDENTIFY CORE CELL STATE DRIVERS OF GLIOBLASTOMA. Neuro-Oncology, 2017, 19, vi99-vi99.	0.6	0
266	SCDT-23. VISUALIZATION OF BRAIN TUMOR BY NEAR-INFRARED FLUORESCENCE IMAGING VIA TUMOR-TARGETING NOVEL PEPTIDE IDENTIFIED BY PHAGE DISPLAY. Neuro-Oncology, 2017, 19, vi269-vi269.	0.6	0
267	EXTH-75. IMAGING GLIOBLASTOMA STEM CELLS WITH 7-AMINO ACID-LENGTH TUMOR-HOMING PEPTIDE IDENTIFIED BY PHAGE DISPLAY BIOPANNING. Neuro-Oncology, 2017, 19, vi89-vi89.	0.6	0
268	Reply to â€~Assembling the brain trust: the multidisciplinary imperative in neuro-oncology'. Nature Reviews Clinical Oncology, 2019, 16, 522-523.	12.5	0
269	ETMM-08 METABOLIC REGULATION OF THE EPIGENOME DRIVES LETHAL INFANTILE EPENDYMOMA. Neuro-Oncology Advances, 2021, 3, i15-i16.	0.4	0
270	Heterologous expression of microbial flavohemoglobin can modulate the effects of nitric oxide in mammalian cells. FASEB Journal, 2010, 24, 871.2.	0.2	0

#	Article	IF	CITATIONS
271	The effect of L-amino acid oxidase on activity of melphalan against an intracranial xenograft. Cancer Chemotherapy and Pharmacology, 1995, 36, 379-384.	1.1	ο
272	EPEN-18. Oncogenic 3D genome conformations identify novel therapeutic targets in ependymoma. Neuro-Oncology, 2022, 24, i42-i42.	0.6	0