Dapeng Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1362568/publications.pdf

Version: 2024-02-01

1040056 1058476 20 203 9 14 citations h-index g-index papers 20 20 20 249 times ranked citing authors docs citations all docs

#	Article	IF	CITATIONS
1	First observation of tetranitro iron (II) phthalocyanine catalyzed oxidation of phenolic pollutant assisted with 4-aminoantipyrine using dioxygen as oxidant. Journal of Molecular Catalysis A, 2011, 345, 108-116.	4.8	50
2	An ESIPT-Based Fluorescent Probe for Hydrazine Detection in Aqueous Solution and its Application in Living Cells. Journal of Fluorescence, 2017, 27, 679-687.	2.5	30
3	Regulating the relative content of O2â^² and OH for PCPNa degradation on BiOCl plates with controllable exposed crystal faces and surface oxygen vacancies. Separation and Purification Technology, 2019, 228, 115743.	7.9	14
4	Fast chromogenic identification of phenolic pollutants via homogeneous oxidation with t-BuOOH in the presence of iron (III) octacarboxyphthalocyanine. Catalysis Communications, 2014, 45, 95-99.	3.3	13
5	Synthesis of Two Novel Water-Soluble Iron Phthalocyanines and Their Application in Fast Chromogenic Identification of Phenolic Pollutants. Catalysis Letters, 2014, 144, 487-497.	2.6	12
6	Green synthesis and characterization of crystalline zinc phthalocyanine and cobalt phthalocyanine prisms by a simple solvothermal route. CrystEngComm, 2018, 20, 2749-2758.	2.6	12
7	The efficient, fast and facile decolorization of organic dyes homogeneously catalyzed by iron octacarboxylic phthalocyanine. Chemosphere, 2019, 233, 975-982.	8.2	12
8	A novel and green route for solvothermal synthesis of manganese phthalocyanine crystals. Dyes and Pigments, 2015, 113, 200-204.	3.7	10
9	Synthesis of highly crystalline copper phthalocyanine needles by solvothermal method. Materials Letters, 2016, 163, 61-64.	2.6	10
10	Daylight-driven photocatalytic degradation of ionic dyes with negatively surface-charged In2S3 nanoflowers: dye charge-dependent roles of reactive species. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	9
11	NHC-Catalyzed Transformation Reactions of Imines: Electrophilic versus Nucleophilic Attack. Journal of Organic Chemistry, 2022, 87, 7989-7994.	3.2	7
12	A green route to prepare metal-free phthalocyanine crystals with controllable structures by a simple solvothermal method. RSC Advances, 2021, 11, 31226-31234.	3.6	5
13	How many hydrogen molecules (H2) can be stored in a clathrate hydrate cage?. Journal of Renewable and Sustainable Energy, 2018, 10, 034902.	2.0	4
14	Development of 2-Chlorophenol Sensor Based on a Fiber Optic Oxygen Transducer via Oxidation Reaction Catalyzed by Tetranitro Iron (II) Phthalocyanine. IEEE Sensors Journal, 2014, 14, 3693-3700.	4.7	3
15	Insight into the reactivity difference of two iron phthalocyanine catalysts in chromogenic reaction: DFT theoretical study. Inorganic and Nano-Metal Chemistry, 2017, 47, 1406-1411.	1.6	3
16	A simple and facile bioinspired catalytic strategy to decolorize dye wastewater by using metal octacarboxyphthalocyanine particles. Journal of Hazardous Materials, 2019, 380, 120842.	12.4	3
17	Enhancing heterogeneous catalytic activity of iron (II) phthalocyanine by ethanol and its application in 2,4-dichlorophenol detection. Journal Wuhan University of Technology, Materials Science Edition, 2014, 29, 567-571.	1.0	2
18	Exploring the activation pathway of photo-induced electrons in facets-dependent I ^{â^'} doped BiOCl nanosheets for PCPNa degradation. Nanotechnology, 2021, 32, 495707.	2.6	2

#	Article	IF	CITATIONS
19	TiO ₂ -kaolin-PE composite film: A study based on photocatalytic degradation and biodegradation. Polymer Composites, 2016, 37, 2353-2359.	4.6	1
20	Simultaneous activation of KHSO5 and BuOOH by iron octacarboxyphthalocyanine loaded on fly ash microspheres to boost pollutant degradation. Journal of Industrial and Engineering Chemistry, 2022, 114, 242-253.	5.8	1