
Oleg Savenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1362271/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of quantum electron transport and surface scattering of charge carriers on the conductivity of nanolayer. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 427, 127933.	2.1	3
2	The influence of isoenergy surface anisotropy and surface scattering kinetics on the conductivity of a thin metal layer. Journal of Physics: Conference Series, 2021, 1730, 012040.	0.4	0
3	Electrical conductivity of a thin film in the case of an arbitrarily oriented ellipsoidal isoenergetic surface of a conductor. Physica Scripta, 2021, 96, 045803.	2.5	6
4	The influence of Fermi surface anisotropy and the charge carrier surface scattering kinetics on the electrical conductivity of a thin metal film in the view of the quantum size effect. Journal of Physics: Conference Series, 2021, 2056, 012018.	0.4	1
5	Quantum Transport in a Semiconductor Nanolayer Taking into Account the Surface Scattering of Carriers. Semiconductors, 2021, 55, 755.	0.5	0
6	Calculation of thin wire conductivity in a longitudinal magnetic field taking into account Fuchs boundary conditions. Physica Scripta, 2020, 95, 045805.	2.5	7
7	High-frequency Magnetotransport in a thin Metal Layer with Variable Specularity Coefficients of its Boundaries. Technical Physics, 2020, 65, 1912-1921.	0.7	4
8	Calculation of the conductivity of a thin conductive layer taking into account Soffer boundary conditions and isoenergy surface anisotropy of conductor. Journal of Physics: Conference Series, 2020, 1697, 012094.	0.4	1
9	Effect of the Boundary Conditions on the High-Frequency Electrical Conductivity of a Thin Conducting Layer in a Longitudinal Magnetic Field. Semiconductors, 2020, 54, 1039-1046.	0.5	0
10	Calculation of high-frequency conductivity and Hall constant of a thin conductive layer in the view of equal specularity coefficients of its surfaces. Journal of Physics: Conference Series, 2018, 1124, 071003.	0.4	0
11	Effect of Boundary Conditions on the Electrical and Galvanomagnetic Properties of a Thin Metal Film. Journal of Surface Investigation, 2017, 11, 1159-1166.	0.5	3
12	Calculation of the RF Conductivity and Hall Constant of a Thin Metal Film. Technical Physics, 2017, 62, 1766-1771.	0.7	5
13	Calculating the high-frequency electrical conductivity of a thin semiconductor film for different specular reflection coefficients of its surface. Russian Microelectronics, 2017, 46, 252-260.	0.5	8
14	Calculation of the high-frequency conductivity and the Hall constant of a thin semiconductor film. Proceedings of SPIE, 2016, , .	0.8	0
15	The influence of boundary conditions on the electrical conductivity of a thin cylindrical wire. Russian Microelectronics, 2016, 45, 119-127.	0.5	5