Amrit Pal Toor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1362254/publications.pdf Version: 2024-02-01

AMPIT PAL TOOP

#	Article	IF	CITATIONS
1	Photocatalytic degradation of pesticide monocrotophos in water using W-TiO2 in slurry and fixed bed recirculating reactor. Journal of Molecular Structure, 2022, 1265, 133392.	3.6	9
2	Comparative study on Graphene Oxide and MCM-48 based catalysts for esterification reaction. Materials Today: Proceedings, 2021, 41, 805-811.	1.8	2
3	Sequential removal and recovery of cadmium ions (Cd ²⁺) using photocatalysis and reduction crystallization from the aqueous phase. Reaction Chemistry and Engineering, 2021, 6, 1677-1687.	3.7	5
4	Assessing the bioremediation potential of indigenously isolated Klebsiella sp. WAH1 for diclofenac sodium: optimization, toxicity and metabolic pathway studies. World Journal of Microbiology and Biotechnology, 2021, 37, 33.	3.6	8
5	A green and energy-efficient photocatalytic process for the accelerated synthesis of lactic acid esters using functionalized quantum dots. Reaction Chemistry and Engineering, 2021, 6, 905-919.	3.7	1
6	High-efficacy glycerol acetalization with silica gel immobilized BrÃุnsted acid ionic liquid catalysts—preparation and comprehending the counter-anion effect on the catalytic activity. New Journal of Chemistry, 2021, 45, 21807-21823.	2.8	4
7	"Romanesco broccoli―like palladium nano-fractals for superior methanol electro-oxidation. Journal of Materials Science, 2020, 55, 125-139.	3.7	2
8	Enhanced photocatalytic activity of nickel and nitrogen codoped TiO2 under sunlight. Environmental Technology and Innovation, 2020, 18, 100658.	6.1	21
9	Sequential microbial-photocatalytic degradation of imidacloprid. Environmental Engineering Research, 2020, 25, 597-604.	2.5	7
10	TiO2-Assisted Photocatalytic Degradation of Herbicide 4-Chlorophenoxyacetic Acid: Slurry and Fixed-Bed Approach. Lecture Notes in Civil Engineering, 2019, , 133-143.	0.4	0
11	Photocatalytic Activity of Bi-doped TiO2 for Phenol Degradation Under UV and Sunlight Conditions. Lecture Notes in Civil Engineering, 2019, , 201-212.	0.4	5
12	Enhanced Catalytic Activity of Nano-Fe2O3–MCM-48–SO4 as a Green Catalyst for the Esterification of Acetic Acid with Methanol. Iranian Journal of Science and Technology, Transaction A: Science, 2019, 43, 2831-2842.	1.5	6
13	Motion of spheres and cylinders in viscoelastic fluids: Asymptotic behavior. Powder Technology, 2019, 345, 82-90.	4.2	11
14	Catalytic performance of sulfate-grafted graphene oxide for esterification of acetic acid with methanol. Chemical Engineering Communications, 2019, 206, 592-604.	2.6	12
15	Optimization and modeling of UV-TiO ₂ mediated photocatalytic degradation of golden yellow dye through response surface methodology. Chemical Engineering Communications, 2019, 206, 1123-1138.	2.6	13
16	Studies on glycerol conversion to tricaproin over sulfate promoted iron oxide as catalyst using response surface methodology. Chemical Engineering Research and Design, 2018, 132, 276-284.	5.6	2
17	Assessment of integrated binary process by coupling photocatalysis and photo-Fenton for the removal of cephalexin from aqueous solution. Journal of Materials Science, 2018, 53, 7326-7343.	3.7	19
18	Solar assisted degradation of carbendazim in water using clay beads immobilized with TiO2 & Fe doped TiO2. Solar Energy, 2018, 162, 45-56.	6.1	44

#	Article	IF	CITATIONS
19	Concentrating and Nonconcentrating Slurry and Fixed-Bed Solar Reactors for the Degradation of Herbicide Isoproturon. Journal of Solar Energy Engineering, Transactions of the ASME, 2018, 140, .	1.8	3

Catalyst-coated cement beads for the degradation and mineralization of fungicide carbendazim using laboratory and pilot-scale reactor: catalyst stability analysis. Environmental Technology (United) Tj ETQq0 0 0 rgBT 🕰 verlock 10 Tf 50 69

21	Oscillatory and steady shear rheological properties of aqueous polyacrylamide solutions. Chemical Data Collections, 2018, 17-18, 356-369.	2.3	5
22	Fixed bed recirculation type photocatalytic reactor with TiO2 immobilized clay beads for the degradation of pesticide polluted water. Journal of Environmental Chemical Engineering, 2018, 6, 7035-7043.	6.7	54
23	Sulfated Iron Oxideâ€Catalyzed Esterification of Acetic Acid with <i>n</i> â€Butanol by Reactive Distillation. Chemical Engineering and Technology, 2018, 41, 2196-2202.	1.5	9
24	Elementary Transformation of Glycerol to Trivalerin: Design of an Experimental Approach. ACS Sustainable Chemistry and Engineering, 2017, 5, 802-808.	6.7	5
25	Enhancement in Conversion and Selectivity of Trivalerin Using Reactive Distillation. Industrial & Engineering Chemistry Research, 2017, 56, 12488-12494.	3.7	3
26	Esterification of acetic acid to methyl acetate using activated TiO2 under UV light irradiation at ambient temperature. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 336, 170-175.	3.9	20
27	Visible –Light Induced Photocatalytic Degradation of Fungicide with Fe and Si Doped TiO2 Nanoparticles. Materials Today: Proceedings, 2016, 3, 354-361.	1.8	18
28	HETEROGENEOUS SOLAR PHOTO-FENTON DEGRADATION OF REACTIVE BLACK 5 USING FOUNDRY SAND AND FLY ASH: VALUE ADDITION TO WASTE. Journal of Environmental Engineering and Landscape Management, 2016, 24, 124-132.	1.0	20
29	Sulfated metal oxides: eco-friendly green catalysts for esterification of nonanoic acid with methanol. Green Processing and Synthesis, 2016, 5, 93-100.	3.4	19
30	Facile Synthesis of Tributyrin Catalyzed by Versatile Sulfated Iron Oxide: Reaction Pathway and Kinetic Evaluation. Industrial & Engineering Chemistry Research, 2016, 55, 2534-2542.	3.7	9
31	Utilization of solar energy for the degradation of carbendazim and propiconazole by Fe doped TiO2. Solar Energy, 2016, 125, 65-76.	6.1	44
32	Surfactant assisted liquid phase exfoliation of graphene via probe tip sonication. AIP Conference Proceedings, 2015, , .	0.4	3
33	Esterification of Pentanoic Acid with 1-Propanol by Sulfonated Cation Exchange Resin: Experimental and Kinetic Studies. Chemical Engineering Communications, 2015, , .	2.6	3
34	Photocatalytic degradation of imidacloprid in soil: application of response surface methodology for the optimization of parameters. RSC Advances, 2015, 5, 25059-25065.	3.6	26
35	UV-assisted degradation of propiconazole in a TiO2aqueous suspension: identification of transformation products and the reaction pathway using GC/MS. International Journal of Environmental Analytical Chemistry, 2015, 95, 494-507.	3.3	9
36	Sulfated Iron Oxide: A Proficient Catalyst for Esterification of Butanoic Acid with Glycerol. Industrial & Engineering Chemistry Research, 2015, 54, 3285-3292.	3.7	29

Amrit Pal Toor

#	Article	IF	CITATION
37	Potential of <scp><i>E</i></scp> <i>nterobacter</i> sp. Strain <scp>ATA</scp> 1 on imidacloprid degradation in soil microcosm: Effects of various parameters. Environmental Progress and Sustainable Energy, 2015, 34, 1291-1297.	2.3	6
38	Parametric study on degradation of fungicide carbendazim in dilute aqueous solutions using nano TiO ₂ . Desalination and Water Treatment, 2015, 54, 122-131.	1.0	30
39	Optimization and kinetic studies for degradation of insecticide monocrotophos using LR grade and P25 TiO ₂ under UV/Sunlight conditions. Environmental Progress and Sustainable Energy, 2014, 33, 1201-1208.	2.3	14
40	Photocatalytic degradation of herbicide isoproturon in TiO ₂ Aqueous Suspensions: Study of Reaction Intermediates and Degradation Pathways. Environmental Progress and Sustainable Energy, 2014, 33, 402-409.	2.3	23
41	Reaction Kinetics of Catalytic Esterification of Nonanoic Acid with Ethanol over Amberlyst 15. International Journal of Chemical Reactor Engineering, 2014, 12, 451-463.	1.1	14
42	Amberlyst 15 Catalyzed Esterification of Nonanoic Acid with 1-Propanol: Kinetics, Modeling, and Comparison of Its Reaction Kinetics with Lower Alcohols. Industrial & Engineering Chemistry Research, 2014, 53, 2167-2174.	3.7	42
43	Degradation of Imidacloprid in Liquid byEnterobactersp. Strain ATA1 Using Co-Metabolism. Bioremediation Journal, 2014, 18, 227-235.	2.0	17
44	Adsorption and Kinetic Parameters for Synthesis of Methyl Nonanoate over Heterogeneous Catalysts. Industrial & Engineering Chemistry Research, 2012, 51, 14367-14375.	3.7	29
45	Kinetic Study of Esterification of Acetic Acid with n-butanol and isobutanol Catalyzed by Ion Exchange Resin. Bulletin of Chemical Reaction Engineering and Catalysis, 2011, 6, .	1.1	29
46	Photocatalytic degradation of Direct Yellow 12 dye using UV/TiO2 in a shallow pond slurry reactor. Dyes and Pigments, 2006, 68, 53-60.	3.7	230
47	Enhancement in Photocatalytic Activity of Nano-TiO ₂ Photocatalyst by Carbon Doping. Materials Science Forum, 0, 757, 271-284.	0.3	13