
Michelle Watt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1361780/publications.pdf Version: 2024-02-01

Μιζηείι ε Μλττ

#	Article	IF	CITATIONS
1	Modulators or facilitators? Roles of lipids in plant root–microbe interactions. Trends in Plant Science, 2022, 27, 180-190.	4.3	45
2	A toolkit to rapidly modify root systems through single plant selection. Plant Methods, 2022, 18, 2.	1.9	8
3	Root Growth and Architecture of Wheat and Brachypodium Vary in Response to Algal Fertilizer in Soil and Solution. Agronomy, 2022, 12, 285.	1.3	4
4	The root system architecture of wheat establishing in soil is associated with varying elongation rates of seminal roots: quantification using 4D magnetic resonance imaging. Journal of Experimental Botany, 2022, 73, 2050-2060.	2.4	19
5	Rhizosphere models: their concepts and application to plant-soil ecosystems. Plant and Soil, 2022, 474, 17-55.	1.8	9
6	N-dependent dynamics of root growth and nitrate and ammonium uptake are altered by the bacterium <i>Herbaspirillum seropedicae</i> in the cereal model <i>Brachypodium distachyon</i> . Journal of Experimental Botany, 2022, 73, 5306-5321.	2.4	11
7	Alleviation of salinity stress in plants by endophytic plant-fungal symbiosis: Current knowledge, perspectives and future directions. Plant and Soil, 2021, 461, 219-244.	1.8	109
8	Time-resolution of the shoot and root growth of the model cereal Brachypodium in response to inoculation with Azospirillum bacteria at low phosphorus and temperature. Plant Growth Regulation, 2021, 93, 149-162.	1.8	10
9	Wheat Can Access Phosphorus From Algal Biomass as Quickly and Continuously as From Mineral Fertilizer. Frontiers in Plant Science, 2021, 12, 631314.	1.7	7
10	Understanding plant-root interactions with rhizobacteria to improve biological nitrogen fixation in crops. Burleigh Dodds Series in Agricultural Science, 2021, , 163-194.	0.1	1

#	Article	IF	CITATIONS
19	Energy costs of salt tolerance in crop plants. New Phytologist, 2020, 225, 1072-1090.	3.5	284
20	Crop Improvement from Phenotyping Roots: Highlights Reveal Expanding Opportunities. Trends in Plant Science, 2020, 25, 105-118.	4.3	141
21	Beyond Digging: Noninvasive Root and Rhizosphere Phenotyping. Trends in Plant Science, 2020, 25, 119-120.	4.3	49
22	Effects of Root Temperature on the Plant Growth and Food Quality of Chinese Broccoli (Brassica) Tj ETQq0 0 0 r	gBT /Over 1.3	ock 10 Tf 50

23	Editorial: Phenotyping; From Plant, to Data, to Impact and Highlights of the International Plant Phenotyping Symposium - IPPS 2018. Frontiers in Plant Science, 2020, 11, 618342.	1.7	2
24	Root phenotypes at maturity in diverse wheat and triticale genotypes grown in three field experiments: Relationships to shoot selection, biomass, grain yield, flowering time, and environment. Field Crops Research, 2020, 255, 107870.	2.3	25
25	Phenotyping: New Windows into the Plant for Breeders. Annual Review of Plant Biology, 2020, 71, 689-712.	8.6	102
26	Root phenotypes of young wheat plants grown in controlled environments show inconsistent correlation with mature root traits in the field. Journal of Experimental Botany, 2020, 71, 4751-4762.	2.4	43
27	Effects of Root Cooling on Plant Growth and Fruit Quality of Cocktail Tomato during Two Consecutive Seasons. Journal of Food Quality, 2019, 2019, 1-15.	1.4	14
28	Soil compaction and the architectural plasticity of root systems. Journal of Experimental Botany, 2019, 70, 6019-6034.	2.4	166
29	Multilab EcoFAB study shows highly reproducible physiology and depletion of soil metabolites by a model grass. New Phytologist, 2019, 222, 1149-1160.	3.5	55
30	A sterile hydroponic system for characterising root exudates from specific root types and whole-root systems of large crop plants. Plant Methods, 2018, 14, 114.	1.9	25
31	Monitoring of Plant Protein Post-translational Modifications Using Targeted Proteomics. Frontiers in Plant Science, 2018, 9, 1168.	1.7	41
32	GrowScreen-PaGe, a non-invasive, high-throughput phenotyping system based on germination paper to quantify crop phenotypic diversity and plasticity of root traits under varying nutrient supply. Functional Plant Biology, 2017, 44, 76.	1.1	47
33	Root hairs enable high transpiration rates in drying soils. New Phytologist, 2017, 216, 771-781.	3.5	123
34	Root type is not an important driver of mycorrhizal colonisation in Brachypodium distachyon. Pedobiologia, 2017, 65, 5-15.	0.5	13
35	O <scp>pen</scp> S <scp>im</scp> R <scp>oot</scp> : widening the scope and application of root architectural models. New Phytologist, 2017, 215, 1274-1286.	3.5	158

#	Article	IF	CITATIONS
37	Microbiome and Exudates of the Root and Rhizosphere of Brachypodium distachyon, a Model for Wheat. PLoS ONE, 2016, 11, e0164533.	1.1	211
38	Brachypodium distachyon genotypes vary in resistance to Rhizoctonia solani AG8. Functional Plant Biology, 2016, 43, 189.	1.1	7
39	Plant roots: understanding structure and function in an ocean of complexity. Annals of Botany, 2016, 118, 555-559.	1.4	55
40	A portable fluorescence spectroscopy imaging system for automated root phenotyping in soil cores in the field. Journal of Experimental Botany, 2016, 67, 1033-1043.	2.4	60
41	Wheats developed for high yield on stored soil moisture have deep vigorous root systems. Functional Plant Biology, 2016, 43, 173.	1.1	27
42	Brachypodium as an emerging model for cereal–pathogen interactions. Annals of Botany, 2015, 115, 717-731.	1.4	60
43	Simultaneous effects of leaf irradiance and soil moisture on growth and root system architecture of novel wheat genotypes: implications for phenotyping. Journal of Experimental Botany, 2015, 66, 5441-5452.	2.4	21
44	Variation in Adult Plant Phenotypes and Partitioning among Seed and Stem-Borne Roots across <i>Brachypodium distachyon</i> Accessions to Exploit in Breeding Cereals for Well-Watered and Drought Environments. Plant Physiology, 2015, 168, 953-967.	2.3	44
45	Evolution of bacterial communities in the wheat crop rhizosphere. Environmental Microbiology, 2015, 17, 610-621.	1.8	297
46	<i><scp>B</scp>rachypodium distachyon</i> is a pathosystem model for the study of the wheat disease rhizoctonia root rot. Plant Pathology, 2015, 64, 91-100.	1.2	16
47	Quantifying the response of wheat (Triticum aestivum L) root system architecture to phosphorus in an Oxisol. Plant and Soil, 2014, 385, 303-310.	1.8	35
48	Digital imaging approaches for phenotyping whole plant nitrogen and phosphorus response in <i>Brachypodium distachyon</i> . Journal of Integrative Plant Biology, 2014, 56, 781-796.	4.1	49
49	Genetically vigorous wheat genotypes maintain superior early growth in no-till soils. Plant and Soil, 2014, 377, 127-144.	1.8	14
50	Soil coring at multiple field environments can directly quantify variation in deep root traits to select wheat genotypes for breeding. Journal of Experimental Botany, 2014, 65, 6231-6249.	2.4	134
51	Evaluation of root characteristics, canopy temperature depression and stay green trait in relation to grain yield in wheat under early and late sown conditions. Indian Journal of Plant Physiology, 2014, 19, 43-47.	0.8	11
52	Sense and nonsense in conservation agriculture: Principles, pragmatism and productivity in Australian mixed farming systems. Agriculture, Ecosystems and Environment, 2014, 187, 133-145.	2.5	152
53	A rapid, controlled-environment seedling root screen for wheat correlates well with rooting depths at vegetative, but not reproductive, stages at two field sites. Annals of Botany, 2013, 112, 447-455.	1.4	146
54	Response of millet and sorghum to a varying water supply around the primary and nodal roots. Annals of Botany, 2013, 112, 439-446.	1.4	59

#	Article	IF	CITATIONS
55	Soil conditions and cereal root system architecture: review and considerations for linking Darwin and Weaver. Journal of Experimental Botany, 2013, 64, 1193-1208.	2.4	207
56	Root Gravitropism. , 2013, , 284-297.		1
57	Application of Brachypodium to the genetic improvement of wheat roots. Journal of Experimental Botany, 2012, 63, 3467-3474.	2.4	35
58	The Autoregulation Gene <i>SUNN</i> Mediates Changes in Root Organ Formation in Response to Nitrogen through Alteration of Shoot-to-Root Auxin Transport Â. Plant Physiology, 2012, 159, 489-500.	2.3	55
59	Non-destructive quantification of cereal roots in soil using high-resolution X-ray tomography. Journal of Experimental Botany, 2012, 63, 2503-2511.	2.4	121
60	Mechanisms for cellular transport and release of allelochemicals from plant roots into the rhizosphere. Journal of Experimental Botany, 2012, 63, 3445-3454.	2.4	155
61	Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. Journal of Experimental Botany, 2012, 63, 3485-3498.	2.4	643
62	A screening method to identify genetic variation in root growth response to a salinity gradient. Journal of Experimental Botany, 2011, 62, 69-77.	2.4	114
63	Brachypodium as a Model for the Grasses: Today and the Future Â. Plant Physiology, 2011, 157, 3-13.	2.3	243
64	Large root systems: are they useful in adapting wheat to dry environments?. Functional Plant Biology, 2011, 38, 347.	1.1	241
65	Breeding to improve grain yield in water-limited environments: the CSIRO experience with wheat , 2011, , 105-121.		3
66	Breeding for improved water productivity in temperate cereals: phenotyping, quantitative trait loci, markers and the selection environment. Functional Plant Biology, 2010, 37, 85.	1.1	310
67	Path of water for root growth. Functional Plant Biology, 2010, 37, 1105.	1.1	33
68	Rhizosphere Signals for Plant–Microbe Interactions: Implications for Field-Grown Plants. Progress in Botany Fortschritte Der Botanik, 2010, , 125-161.	0.1	11
69	The rhizosphere: biochemistry and organic substances at the soil–plant interface. 2nd edn Annals of Botany, 2009, 104, ix-x.	1.4	11
70	Specialised root adaptations display cell-specific developmental and physiological diversity. Plant and Soil, 2009, 322, 39-47.	1.8	9
71	Vigorous Crop Root Systems. , 2009, , 309-325.		34
72	The shoot and root growth of Brachypodium and its potential as a model for wheat and other cereal crops. Functional Plant Biology, 2009, 36, 960.	1.1	72

#	Article	IF	CITATIONS
73	Types, structure and potential for axial water flow in the deepest roots of fieldâ€grown cereals. New Phytologist, 2008, 178, 135-146.	3.5	110
74	Organic anions in the rhizosphere of Al-tolerant and Al-sensitive wheat lines grown in an acid soil in controlled and field environments. Soil Research, 2008, 46, 257.	0.6	16
75	Pathways of infection of <i>Brassica napus </i> roots by <i>Leptosphaeria maculans</i> . New Phytologist, 2007, 176, 211-222.	3.5	41
76	Physiological traits and cereal germplasm for sustainable agricultural systems. Euphytica, 2007, 154, 409-425.	0.6	96
77	Rhizosphere biology and crop productivity—a review. Soil Research, 2006, 44, 299.	0.6	107
78	Numbers and locations of native bacteria on field-grown wheat roots quantified by fluorescence in situ hybridization (FISH). Environmental Microbiology, 2006, 8, 871-884.	1.8	160
79	Frozen in time: a new method using cryoâ€scanning electron microscopy to visualize root–fungal interactions. New Phytologist, 2006, 172, 369-374.	3.5	19
80	Rates of Root and Organism Growth, Soil Conditions, and Temporal and Spatial Development of the Rhizosphere. Annals of Botany, 2006, 97, 839-855.	1.4	224
81	A wheat genotype developed for rapid leaf growth copes well with the physical and biological constraints of unploughed soil. Functional Plant Biology, 2005, 32, 695.	1.1	106
82	Strategies to isolate transporters that facilitate organic anion efflux from plant roots. Plant and Soil, 2003, 248, 61-69.	1.8	24
83	Phosphorus acquisition from soil by white lupin (Lupinus albus L.) and soybean (Glycine max L.), species with contrasting root development. Plant and Soil, 2003, 248, 271-283.	1.8	60
84	Soil strength and rate of root elongation alter the accumulation of Pseudomonas spp. and other bacteria in the rhizosphere of wheat. Functional Plant Biology, 2003, 30, 483.	1.1	70
85	Phosphorus acquisition from soil by white lupin (Lupinus albus L.) and soybean (Glycine max L.), species with contrasting root development. , 2003, , 271-283.		2
86	Strategies to isolate transporters that facilitate organic anion efflux from plant roots. , 2003, , 61-69.		0
87	Roots of Banksia spp. (Proteaceae) with Special Reference to Functioning of Their Specialized Proteoid Root Clusters. , 2002, , 989-1006.		19
88	Linking Development and Determinacy with Organic Acid Efflux from Proteoid Roots of White Lupin Grown with Low Phosphorus and Ambient or Elevated Atmospheric CO2 Concentration1. Plant Physiology, 1999, 120, 705-716.	2.3	211
89	Proteoid Roots. Physiology and Development. Plant Physiology, 1999, 121, 317-323.	2.3	210
90	Point specific measurement and monitoring of soil water content with an emphasis on TDR. Canadian Journal of Soil Science, 1996, 76, 307-316.	0.5	35

#	Article	IF	CITATIONS
91	Effects of Local Variations in Soil Moisture on Hydrophobic Deposits and Dye Diffusion in Corn Roots. Botanica Acta, 1996, 109, 492-501.	1.6	17
92	Formation and Stabilization of Rhizosheaths of Zea mays L. (Effect of Soil Water Content). Plant Physiology, 1994, 106, 179-186.	2.3	177
93	Plant and bacterial mucilages of the maize rhizosphere: Comparison of their soil binding properties and histochemistry in a model system. Plant and Soil, 1993, 151, 151-165.	1.8	114
94	Phosphorus Efficient Phenotype of Rice. , 0, , .		6