

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1361529/publications.pdf Version: 2024-02-01

lie Xu

#	Article	IF	CITATIONS
1	Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature, 2018, 555, 83-88.	27.8	1,588
2	Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature, 2016, 539, 411-415.	27.8	1,030
3	Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science, 2017, 355, 59-64.	12.6	897
4	Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains. Nature Materials, 2013, 12, 665-671.	27.5	881
5	Stretchable Self-Healing Polymeric Dielectrics Cross-Linked Through Metal–Ligand Coordination. Journal of the American Chemical Society, 2016, 138, 6020-6027.	13.7	453
6	Skin-Inspired Electronics: An Emerging Paradigm. Accounts of Chemical Research, 2018, 51, 1033-1045.	15.6	407
7	Multi-scale ordering in highly stretchable polymer semiconducting films. Nature Materials, 2019, 18, 594-601.	27.5	251
8	Understanding Polymorphism in Organic Semiconductor Thin Films through Nanoconfinement. Journal of the American Chemical Society, 2014, 136, 17046-17057.	13.7	179
9	Strain-insensitive intrinsically stretchable transistors and circuits. Nature Electronics, 2021, 4, 143-150.	26.0	170
10	Stretchable transistors and functional circuits for human-integrated electronics. Nature Electronics, 2021, 4, 17-29.	26.0	153
11	Evaporation-induced sintering of liquid metal droplets with biological nanofibrils for flexible conductivity and responsive actuation. Nature Communications, 2019, 10, 3514.	12.8	148
12	Inducing Elasticity through Oligoâ€ s iloxane Crosslinks for Intrinsically Stretchable Semiconducting Polymers. Advanced Functional Materials, 2016, 26, 7254-7262.	14.9	138
13	A stretchable and strain-unperturbed pressure sensor for motion interference–free tactile monitoring on skins. Science Advances, 2021, 7, eabi4563.	10.3	136
14	Conjugated Carbon Cyclic Nanorings as Additives for Intrinsically Stretchable Semiconducting Polymers. Advanced Materials, 2019, 31, e1903912.	21.0	99
15	Effect of Solution Shearing Method on Packing and Disorder of Organic Semiconductor Polymers. Chemistry of Materials, 2015, 27, 2350-2359.	6.7	92
16	Stretchable and Fully Degradable Semiconductors for Transient Electronics. ACS Central Science, 2019, 5, 1884-1891.	11.3	92
17	Effects of Molecular Structure and Packing Order on the Stretchability of Semicrystalline Conjugated Poly(Tetrathienoaceneâ€diketopyrrolopyrrole) Polymers. Advanced Electronic Materials, 2017, 3, 1600311.	5.1	89
18	Manganese Porphyrin-dsDNA Complex: A Mimicking Enzyme for Highly Efficient Bioanalysis. Analytical Chemistry, 2013, 85, 3374-3379.	6.5	87

Jie Xu

#	Article	IF	CITATIONS
19	Glass Transition Phenomenon for Conjugated Polymers. Macromolecular Chemistry and Physics, 2019, 220, 1900062.	2.2	69
20	Nonhalogenated Solvent Processable and Printable High-Performance Polymer Semiconductor Enabled by Isomeric Nonconjugated Flexible Linkers. Macromolecules, 2018, 51, 4976-4985.	4.8	68
21	Nonâ€Conjugated Flexible Linkers in Semiconducting Polymers: A Pathway to Improved Processability without Compromising Device Performance. Advanced Electronic Materials, 2016, 2, 1600104.	5.1	65
22	Characterization of Hydrogen Bonding Formation and Breaking in Semiconducting Polymers under Mechanical Strain. Macromolecules, 2019, 52, 2476-2486.	4.8	54
23	Giant positive magnetoresistance in half-metallic double-perovskite Sr ₂ CrWO ₆ thin films. Science Advances, 2017, 3, e1701473.	10.3	52
24	Combinatorial Study of Temperatureâ€Dependent Nanostructure and Electrical Conduction of Polymer Semiconductors: Even Bimodal Orientation Can Enhance 3D Charge Transport. Advanced Functional Materials, 2016, 26, 4627-4634.	14.9	51
25	Stretchable Redoxâ€Active Semiconducting Polymers for Highâ€Performance Organic Electrochemical Transistors. Advanced Materials, 2022, 34, e2201178.	21.0	50
26	Tuning Conjugated Polymer Chain Packing for Stretchable Semiconductors. Advanced Materials, 2022, 34, e2104747.	21.0	47
27	Sensitive Characterization of the Influence of Substrate Interfaces on Supported Thin Films. Macromolecules, 2014, 47, 6365-6372.	4.8	42
28	Direct-Current and Alternating-Current Driving Si Quantum Dots-Based Light Emitting Device. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 206-211.	2.9	30
29	Metal–Ligand Based Mechanophores Enhance Both Mechanical Robustness and Electronic Performance of Polymer Semiconductors. Advanced Functional Materials, 2021, 31, 2009201.	14.9	30
30	Experimental verification of a tunable left-handed material by bias magnetic fields. Applied Physics Letters, 2010, 96, .	3.3	27
31	Probing the interfacial molecular packing in TIPS-pentacene organic semiconductors by surface enhanced Raman scattering. Journal of Materials Chemistry C, 2014, 2, 2985-2991.	5.5	27
32	Enhancing Molecular Alignment and Charge Transport of Solutionâ€Sheared Semiconducting Polymer Films by the Electricalâ€Blade Effect. Advanced Electronic Materials, 2018, 4, 1800110.	5.1	27
33	Challenge and Solution of Characterizing Glass Transition Temperature for Conjugated Polymers by Differential Scanning Calorimetry. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 1635-1644.	2.1	27
34	Detection of Interchain Proximity and Segmental Motion of Polymer Glass. Macromolecules, 2011, 44, 7445-7450.	4.8	21
35	Thickness Dependence of Glass Transitions Measured by AC-Chip Calorimetry in Films with Controlled Interface. Macromolecules, 2013, 46, 7006-7011.	4.8	18
36	Multiamorphous Phases in Diketopyrrolopyrrole-Based Conjugated Polymers: From Bulk to Ultrathin Films, Macromolecules, 2020, 53, 4480-4489.	4.8	18

Jie Xu

#	Article	IF	CITATIONS
37	Integrated Resistive-Capacitive Strain Sensors Based on Polymer–Nanoparticle Composites. ACS Applied Nano Materials, 2020, 3, 4357-4366.	5.0	17
38	Observation of Stepwise Ultrafast Crystallization Kinetics of Donor–Acceptor Conjugated Polymers and Correlation with Field Effect Mobility. Chemistry of Materials, 2021, 33, 1637-1647.	6.7	17
39	Nanoscale quantification of charge injection and transportation process in Si-nanocrystal based sandwiched structure. Nanoscale, 2013, 5, 9971.	5.6	16
40	Effect of Molecular Chain Architecture on Dynamics of Polymer Thin Films Measured by the Ac-Chip Calorimeter. Macromolecules, 2014, 47, 3497-3501.	4.8	16
41	Surface potential modeling and reconstruction in Kelvin probe force microscopy. Nanotechnology, 2017, 28, 365705.	2.6	14
42	A universal and facile approach for building multifunctional conjugated polymers for human-integrated electronics. Matter, 2021, 4, 3015-3029.	10.0	13
43	Periodic layered waveguide with negative index of refraction. Applied Physics Letters, 2007, 90, 082506.	3.3	12
44	Microscopic and macroscopic characterization of the charging effects in SiC/Si nanocrystals/SiC sandwiched structures. Nanotechnology, 2014, 25, 055703.	2.6	10
45	Charge transfer of single laser crystallized intrinsic and phosphorus-doped Si-nanocrystals visualized by Kelvin probe force microscopy. Journal of Applied Physics, 2014, 116, 134309.	2.5	8
46	Lowâ€ŧemperature processing of polymer nanoparticles for bioactive composites. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 2514-2520.	2.1	8
47	Microstructure and carrierâ€ŧransport behaviors of nanocrystalline silicon thin films annealed at various temperatures. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1675-1679.	1.8	6
48	Electronic properties and charge storage effect of amorphous SiN passivated nanocrystalline silicon. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33, .	1.2	5
49	Hydrogen-Bond-Promoted Planar Conformation, Crystallinity, and Charge Transport in Semiconducting Diazaisoindigo Derivatives. , 2022, 4, 1270-1278.		5
50	Synthesis and thermal properties of poly(methyl methacrylate)â€poly(<scp>L</scp> â€lactic) Tj ETQq0 0 0 rgBT 3905-3911.	/Overlock 2.6	10 Tf 50 227 4
51	Nanoscale Characterization of Active Doping Concentration in Boronâ€Doped Individual Si Nanocrystals. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800531.	1.8	3
52	Effective index of refraction in guide wave mode for ferrite based layered composites under different boundary conditions. , 2006, , .		1
53	Directivity enhancement of line source radiation by hollow cylinder made of left-handed material. , 2008, , .		1
54	Effect of loss on directivity enhancement of line source radiation by left-handed material. , 2008, , .		1

54 Effect of loss on directivity enhancement of line source radiation by left-handed material. , 2008, , .