
Rahul Das

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1361213/publications.pdf Version: 2024-02-01

PAHIII DAS

#	Article	IF	CITATIONS
1	Mechanism for Activation of the EGF Receptor Catalytic Domain by the Juxtamembrane Segment. Cell, 2009, 137, 1293-1307.	13.5	506
2	Conformational Coupling across the Plasma Membrane in Activation of the EGF Receptor. Cell, 2013, 152, 543-556.	13.5	423
3	Architecture and Membrane Interactions of the EGF Receptor. Cell, 2013, 152, 557-569.	13.5	417
4	cAMP activation of PKA defines an ancient signaling mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 93-98.	3.3	113
5	Chemical genomics in Escherichia coli identifies an inhibitor of bacterial lipoprotein targeting. Nature Chemical Biology, 2009, 5, 849-856.	3.9	111
6	Understanding the Molecular Basis for the Inhibition of the Alzheimer's Aβ-Peptide Oligomerization by Human Serum Albumin Using Saturation Transfer Difference and Off-Resonance Relaxation NMR Spectroscopy. Journal of the American Chemical Society, 2007, 129, 4282-4290.	6.6	109
7	Regulation of the catalytic activity of the EGF receptor. Current Opinion in Structural Biology, 2011, 21, 777-784.	2.6	87
8	The Projection Analysis of NMR Chemical Shifts Reveals Extended EPAC Autoinhibition Determinants. Biophysical Journal, 2012, 102, 630-639.	0.2	83
9	Structural analysis of autoinhibition in the Ras-specific exchange factor RasGRP1. ELife, 2013, 2, e00813.	2.8	78
10	Analysis of the Role of the C-Terminal Tail in the Regulation of the Epidermal Growth Factor Receptor. Molecular and Cellular Biology, 2015, 35, 3083-3102.	1.1	74
11	Dynamically Driven Ligand Selectivity in Cyclic Nucleotide Binding Domains. Journal of Biological Chemistry, 2009, 284, 23682-23696.	1.6	71
12	The Auto-Inhibitory Role of the EPAC Hinge Helix as Mapped by NMR. PLoS ONE, 2012, 7, e48707.	1.1	63
13	Entropy-driven cAMP-dependent Allosteric Control of Inhibitory Interactions in Exchange Proteins Directly Activated by cAMP. Journal of Biological Chemistry, 2008, 283, 19691-19703.	1.6	59
14	Communication between Tandem cAMP Binding Domains in the Regulatory Subunit of Protein Kinase A-lα as Revealed by Domain-silencing Mutations. Journal of Biological Chemistry, 2010, 285, 15523-15537.	1.6	46
15	A Model for Agonism and Antagonism in an Ancient and Ubiquitous cAMP-binding Domain. Journal of Biological Chemistry, 2007, 282, 581-593.	1.6	41
16	Understanding cAMP-Dependent Allostery by NMR Spectroscopy:Â Comparative Analysis of the EPAC1 cAMP-Binding Domain in Its Apo and cAMP-Bound States. Journal of the American Chemical Society, 2007, 129, 14482-14492.	6.6	41
17	Degradation of MAC13243 and studies of the interaction of resulting thiourea compounds with the lipoprotein targeting chaperone LolA. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 2426-2431.	1.0	39
18	Definition of an electrostatic relay switch critical for the cAMP-dependent activation of protein kinase A as revealed by the D170A mutant of Rlα. Proteins: Structure, Function and Bioinformatics, 2007, 69, 112-124.	1.5	37

RAHUL DAS

#	Article	IF	CITATIONS
19	Mapping Allostery through Equilibrium Perturbation NMR Spectroscopy. Journal of the American Chemical Society, 2006, 128, 8406-8407.	6.6	34
20	A novel protein tyrosine phosphatase like phytase from Lactobacillus fermentum NKN51: Cloning, characterization and application in mineral release for food technology applications. Bioresource Technology, 2018, 249, 1000-1008.	4.8	21
21	Elucidating the regulation of glucose tolerance in a β-glucosidase from Halothermothrix orenii by active site pocket engineering and computational analysis. International Journal of Biological Macromolecules, 2020, 156, 621-632.	3.6	19
22	Mapping Polypeptide Self-Recognition through1H Off-Resonance Relaxation. Journal of the American Chemical Society, 2005, 127, 9358-9359.	6.6	18
23	Arginine-Modified Fluorescent Cold Nanoclusters for Förster Resonance Energy Transfer with a Hemicyanine Dye: A Biofriendly Approach. ACS Applied Nano Materials, 2021, 4, 305-312.	2.4	14
24	An allosteric hot spot in the tandem-SH2 domain of ZAP-70 regulates T-cell signaling. Biochemical Journal, 2020, 477, 1287-1308.	1.7	13
25	NMR assignment of the cAMP-binding domain A of the PKA regulatory subunit. Journal of Biomolecular NMR, 2006, 36, 64-64.	1.6	8
26	Dynamic unfolding of a regulatory subunit of cAMP-dependent protein kinase by capillary electrophoresis: Impact of cAMP dissociation on protein stability. Electrophoresis, 2006, 27, 4196-4204.	1.3	8
27	Development of Non-ionic Surfactant and Protein-Coated Ultrasmall Silver Nanoparticles: Increased Viscoelasticity Enables Potency in Biological Applications. ACS Omega, 2020, 5, 8999-9006.	1.6	8
28	Analysis and Parametric Optimization of1H Off-Resonance Relaxation NMR Experiments Designed to Map Polypeptide Self-Recognition and Other Noncovalent Interactions. Journal of Physical Chemistry B, 2006, 110, 20664-20670.	1.2	7
29	Cytotoxic Ruthenium(II) Complexes of Pyrazolylbenzimidazole Ligands That Inhibit VEGFR2 Phosphorylation. Inorganic Chemistry, 2021, 60, 18379-18394.	1.9	6
30	Regulating the discriminatory response to antigen by T-cell receptor. Bioscience Reports, 2022, 42, .	1.1	5
31	Selective targeting of the inactive state of hematopoietic cell kinase (Hck) with a stable curcumin derivative. Journal of Biological Chemistry, 2021, 296, 100449.	1.6	3
32	Backbone resonance assignment of the cAMP-binding domains of the protein kinase A regulatory subunit lα. Biomolecular NMR Assignments, 2021, 15, 379-382.	0.4	0