Balpreet Singh Ahluwalia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1361160/publications.pdf Version: 2024-02-01

		331259	377514
108	1,645	21	34
papers	citations	h-index	g-index
117	117	117	1421
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Mitochondrial dynamics and quantification of mitochondriaâ€derived vesicles in cardiomyoblasts using structured illumination microscopy. Journal of Biophotonics, 2022, 15, e202100305.	1.1	7
2	Roadmap on multimode light shaping. Journal of Optics (United Kingdom), 2022, 24, 013001.	1.0	41
3	Unbalanced low coherence interference microscopy. Optics and Lasers in Engineering, 2022, 151, 106932.	2.0	2
4	Quantification of the NA dependent change of shape in the image formation of a zâ€polarized fluorescent molecule using vectorial diffraction simulations. Microscopy Research and Technique, 2022, , .	1.2	2
5	Chip-based multimodal super-resolution microscopy for histological investigations of cryopreserved tissue sections. Light: Science and Applications, 2022, 11, 43.	7.7	11
6	Finite element simulation of transmission and reflection of acoustic waves in the ultrasonic transducer. Japanese Journal of Applied Physics, 2022, 61, SG1029.	0.8	3
7	Three-dimensional structured illumination microscopy data of mitochondria and lysosomes in cardiomyoblasts under normal and galactose-adapted conditions. Scientific Data, 2022, 9, 98.	2.4	8
8	From fixed-dried to wet-fixed to live– comparative super-resolution microscopy of liver sinusoidal endothelial cell fenestrations. Nanophotonics, 2022, .	2.9	3
9	Multi-moded high-index contrast optical waveguide for super-contrast high-resolution label-free microscopy. Nanophotonics, 2022, 11, 3421-3436.	2.9	1
10	Demystifying speckle field interference microscopy. Scientific Reports, 2022, 12, .	1.6	6
11	Photonic chip-based optical nanoscopy. , 2021, , .		0
12	Two-dimensional TIRF-SIM–traction force microscopy (2D TIRF-SIM-TFM). Nature Communications, 2021, 12, 2169.	5.8	31
13	Characterization of Liposomes Using Quantitative Phase Microscopy (QPM). Pharmaceutics, 2021, 13, 590.	2.0	8
14	SAMM50 acts with p62 in piecemeal basal- and OXPHOS-induced mitophagy of SAM and MICOS components. Journal of Cell Biology, 2021, 220, .	2.3	39
15	Deriving high contrast fluorescence microscopy images through low contrast noisy image stacks. Biomedical Optics Express, 2021, 12, 5529.	1.5	2
16	Study of waveguide background at visible wavelengths for on-chip nanoscopy. Optics Express, 2021, 29, 20735.	1.7	4
17	Fluorescence fluctuation-based super-resolution microscopy using multimodal waveguided illumination. Optics Express, 2021, 29, 23368.	1.7	8
18	A transparent waveguide chip for versatile total internal reflection fluorescence-based microscopy and nanoscopy. Communications Materials, 2021, 2, .	2.9	15

#	Article	IF	CITATIONS
19	Blind Super-Resolution Approach for Exploiting Illumination Variety in Optical-Lattice Illumination Microscopy. ACS Photonics, 2021, 8, 2626-2634.	3.2	9
20	High-throughput spatial sensitive quantitative phase microscopy using low spatial and high temporal coherent illumination. Scientific Reports, 2021, 11, 15850.	1.6	7
21	Single-shot fringe pattern phase retrieval using improved period-guided bidimensional empirical mode decomposition and Hilbert transform. Optics Express, 2021, 29, 31632.	1.7	8
22	Artefact removal in ground truth deficient fluctuations-based nanoscopy images using deep learning. Biomedical Optics Express, 2021, 12, 191.	1.5	3
23	Photonic-chip: a multimodal imaging tool for histopathology. , 2021, , .		0
24	Multimodal on-chip nanoscopy and quantitative phase imaging reveals the nanoscale morphology of liver sinusoidal endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	6
25	Physics-based machine learning for subcellular segmentation in living cells. Nature Machine Intelligence, 2021, 3, 1071-1080.	8.3	23
26	High spatially sensitive quantitative phase imaging assisted with deep neural network for classification of human spermatozoa under stressed condition. Scientific Reports, 2020, 10, 13118.	1.6	28
27	Learning Nanoscale Motion Patterns of Vesicles in Living Cells. , 2020, , .		5
28	Photonic-chip assisted correlative light and electron microscopy. Communications Biology, 2020, 3, 739.	2.0	9
29	Structured illumination microscopy using a photonic chip. Nature Photonics, 2020, 14, 431-438.	15.6	89
30	Visualizing ultrastructural details of placental tissue with super-resolution structured illumination microscopy. Placenta, 2020, 97, 42-45.	0.7	12
31	Improving the space-bandwidth product of structured illumination microscopy using a transillumination configuration. Journal Physics D: Applied Physics, 2020, 53, 044006.	1.3	10
32	A waveguide imaging platform for liveâ€cell TIRF imaging of neurons over large fields of view. Journal of Biophotonics, 2020, 13, e201960222.	1.1	13
33	Intracellular distribution and transcriptional regulation of Atlantic salmon (Salmo salar) Rab5c, 7a and 27a homologs by immune stimuli. Fish and Shellfish Immunology, 2020, 99, 119-129.	1.6	12
34	Liver sinusoidal endothelial cells contribute to the uptake and degradation of entero bacterial viruses. Scientific Reports, 2020, 10, 898.	1.6	35
35	MusiJ: an ImageJ plugin for video nanoscopy. Biomedical Optics Express, 2020, 11, 2548.	1.5	5
36	Quantitative assessment of morphology and sub-cellular changes in macrophages and trophoblasts during inflammation. Biomedical Optics Express, 2020, 11, 3733.	1.5	7

#	Article	IF	CITATIONS
37	Deep learning architecture "LightOCT―for diagnostic decision support using optical coherence tomography images of biological samples. Biomedical Optics Express, 2020, 11, 5017.	1.5	20
38	Automatic fringe pattern enhancement using truly adaptive period-guided bidimensional empirical mode decomposition. Optics Express, 2020, 28, 6277.	1.7	12
39	Sampling moiré method: a tool for sensing quadratic phase distortion and its correction for accurate quantitative phase microscopy. Optics Express, 2020, 28, 10062.	1.7	9
40	Sub-nanometer height sensitivity by phase shifting interference microscopy under environmental fluctuations. Optics Express, 2020, 28, 9340.	1.7	13
41	High space-bandwidth in quantitative phase imaging using partially spatially coherent digital holographic microscopy and a deep neural network. Optics Express, 2020, 28, 36229.	1.7	14
42	On-chip TIRF nanoscopy by applying Haar wavelet kernel analysis on intensity fluctuations induced by chip illumination. Optics Express, 2020, 28, 35454.	1.7	18
43	Soft thresholding schemes for multiple signal classification algorithm. Optics Express, 2020, 28, 34434.	1.7	13
44	Photonic-chip based free space beam shaping and steering for advanced optical microscopy application. OSA Continuum, 2020, 3, 359.	1.8	4
45	Highly temporal stable, wavelength-independent, and scalable field-of-view common-path quantitative phase microscope. Journal of Biomedical Optics, 2020, 25, .	1.4	3
46	Object detection neural network improves Fourier ptychography reconstruction. Optics Express, 2020, 28, 37199.	1.7	9
47	Chip-Based Resonance Raman Spectroscopy Using Tantalum Pentoxide Waveguides. IEEE Photonics Technology Letters, 2019, 31, 1127-1130.	1.3	12
48	Partially spatially coherent digital holographic microscopy and machine learning for quantitative analysis of human spermatozoa under oxidative stress condition. Scientific Reports, 2019, 9, 3564.	1.6	32
49	High-Throughput Total Internal Reflection Fluorescence and Direct Stochastic Optical Reconstruction Microscopy Using a Photonic Chip. Journal of Visualized Experiments, 2019, , .	0.2	5
50	Study of electric fields of diffraction from spatial light modulator: discussion. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2019, 36, 1778.	0.8	4
51	Characterization of color cross-talk of CCD detectors and its influence in multispectral quantitative phase imaging. Optics Express, 2019, 27, 4572.	1.7	19
52	Nanoscopy on-a-chip: super-resolution imaging on the millimeter scale. Optics Express, 2019, 27, 6700.	1.7	35
53	Super-condenser enables labelfree nanoscopy. Optics Express, 2019, 27, 25280.	1.7	11
54	Effect on the longitudinal coherence properties of a pseudothermal light source as a function of source size and temporal coherence. Optics Letters, 2019, 44, 1817.	1.7	22

4

#	Article	IF	CITATIONS
55	Novel highly stable wavelength independent quantitative phase microscope. , 2019, , .		0
56	Digital holographic microscopy and machine learning approach for the classification of inflammation in macrophages. , 2019, , .		1
57	Label-free nanoscopy enabled by coherent imaging with photonic waveguides. , 2019, , .		0
58	New ways of looking at very small holes – using optical nanoscopy to visualize liver sinusoidal endothelial cell fenestrations. Nanophotonics, 2018, 7, 575-596.	2.9	18
59	Stimulation of exosome release by extracellular <scp>DNA</scp> is conserved across multiple cell types. FEBS Journal, 2018, 285, 3114-3133.	2.2	45
60	Multi-color imaging of sub-mitochondrial structures in living cells using structured illumination microscopy. Nanophotonics, 2018, 7, 935-947.	2.9	18
61	Accurate estimation of the illumination pattern's orientation and wavelength in sinusoidal structured illumination microscopy. Applied Optics, 2018, 57, 1019.	0.9	14
62	Single-Input and Multiple-Output Surface Acoustic Wave Sensing for Damage Quantification in Piezoelectric Sensors. Sensors, 2018, 18, 2017.	2.1	10
63	Photonic integrated circuits for nanoscopy. , 2018, , .		2
64	Multi-modal chip-based fluorescence and quantitative phase microscopy for studying inflammation in macrophages. Optics Express, 2018, 26, 19864.	1.7	18
65	Quantitative phase microscopy of red blood cells during planar trapping and propulsion. Lab on A Chip, 2018, 18, 3025-3036.	3.1	27
66	On-Chip Nanoscopy. , 2018, , .		0
67	Chip-based Total Internal Reflection Fluorescence Microscopy. , 2018, , .		0
68	Live-cell imaging of human spermatozoa using structured illumination microscopy. Biomedical Optics Express, 2018, 9, 5939.	1.5	0
69	Chip-based wide field-of-view nanoscopy. Nature Photonics, 2017, 11, 322-328.	15.6	128
70	High-resolution optical nanoscopy of placental cells. Placenta, 2017, 57, 238-239.	0.7	0
71	Silicon nitride waveguide platform for fluorescence microscopy of living cells. Optics Express, 2017, 25, 27678.	1.7	61

72 Chip-based nanoscopy: towards integration and high-throughput imaging. , 2017, , .

#	Article	IF	CITATIONS
73	Rib waveguides for trapping and transport of particles. Optics Express, 2016, 24, 4477.	1.7	13
74	High-frequency poly(vinylidene fluoride) copolymer transducers used for spectral characterization of settled microparticles. Japanese Journal of Applied Physics, 2016, 55, 07KB07.	0.8	9
75	Evaluation of adhesive-free crossed-electrode poly(vinylidene fluoride) copolymer array transducers for high frequency imaging. Japanese Journal of Applied Physics, 2016, 55, 07KE11.	0.8	5
76	Quantitative phase measurement for the damage detection in piezoelectric crystal using angularly placed multiple inter digital transducers. , 2016, , .		0
77	Chip-based optical microscopy for imaging membrane sieve plates of liver scavenger cells. , 2015, , .		0
78	Optical nanoscopy to reveal structural and functional properties of liver cells (Presentation) Tj ETQq0 0 0 rgBT /C	Overlock 10	0 Tf 50 542 T
79	Squeezing red blood cells on an optical waveguide to monitor cell deformability during blood storage. Analyst, The, 2015, 140, 223-229.	1.7	18
80	Optical transport, lifting and trapping of micro-particles by planar waveguides. Optics Express, 2015, 23, 6601.	1.7	29
81	Near-field waveguide trapping and tracking of particles using fluorescence imaging. Proceedings of SPIE, 2014, , .	0.8	0
82	Optical deformation of red blood cells trapped on a narrow waveguide. , 2014, , .		0
83	Optical nanoscopy of a living cell. Proceedings of SPIE, 2014, , .	0.8	0
84	Sensitivity of Mach-Zehnder interferometer for dissolved gas monitoring. , 2014, , .		2
85	Quantitative Analysis of Autophagy using Advanced 3D Fluorescence Microscopy. Journal of Visualized Experiments, 2013, , e50047.	0.2	2
86	Optical waveguide loop for planar trapping of blood cells and microspheres. , 2013, , .		1
87	Serial Raman spectroscopy of particles trapped on a waveguide. Optics Express, 2013, 21, 2964.	1.7	26
88	Surface transport and stable trapping of particles and cells by an optical waveguide loop. Lab on A Chip, 2012, 12, 3436.	3.1	69
89	Optical waveguide trapping forces on hollow glass spheres. Proceedings of SPIE, 2011, , .	0.8	2
90	Waveguide trapping of hollow glass spheres. Optics Letters, 2011, 36, 3347.	1.7	14

#	Article	IF	CITATIONS
91	Optical trapping forces on biological cells on a waveguide surface. , 2011, , .		1
92	Integrated platform based on high refractive index contrast waveguide for optical guiding and sorting. Proceedings of SPIE, 2010, , .	0.8	12
93	Collinear non-diffracting beams: classification and properties. , 2010, , .		Ο
94	Optical trapping and propulsion of red blood cells on waveguide surfaces. Optics Express, 2010, 18, 21053.	1.7	62
95	Fabrication and optimization of Tantalum pentoxide waveguides for optical micro-propulsion. , 2010, , .		1
96	Fabrication of Submicrometer High Refractive Index Tantalum Pentoxide Waveguides for Optical Propulsion of Microparticles. IEEE Photonics Technology Letters, 2009, 21, 1408-1410.	1.3	59
97	Integration of laser trapping for continuous and selective monitoring of photothermal response of a single microparticle. Optics Letters, 2008, 33, 2779.	1.7	5
98	Experimental transfer of torque induced by localized polarization of radially polarized vector beams to anisotropic microparticles. Applied Physics Letters, 2007, 91, 171102.	1.5	10
99	Selective generation of high-order optical vortices from a single phase wedge. Optics Letters, 2007, 32, 2927.	1.7	11
100	Wavelength-scalable micro-fabricated wedge for generation of optical vortex beam in optical manipulation. Applied Physics B: Lasers and Optics, 2007, 86, 209-213.	1.1	12
101	3D optical vortices generated by micro-optical elements and its novel applications. Optoelectronics Letters, 2007, 3, 136-140.	0.4	1
102	Micromanipulation of high and low indices microparticles using a microfabricated double axicon. Journal of Applied Physics, 2006, 99, 113104.	1.1	27
103	Design and fabrication of a double-axicon for generation of tailorable self-imaged three-dimensional intensity voids. Optics Letters, 2006, 31, 987.	1.7	61
104	Micro-Optical Elements for Optical Manipulation. Optics and Photonics News, 2006, 17, 36.	0.4	3
105	Bottle beam based optical trapping system for three-dimensional trapping of high and low index microparticles. , 2005, , .		0
106	Self-imaged optical bottle beam based optical tweezers systems. , 2005, , .		0
107	Generation of self-imaged optical bottle beams. Optics Communications, 2004, 238, 177-184.	1.0	63
108	Transfer of â€~pure' on-axis spin angular momentum to the absorptive particle using self-imaged bottle beam optical tweezers system. Optics Express, 2004, 12, 5172.	1.7	36