Alfons Stams

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1360656/publications.pdf

Version: 2024-02-01

361045 676716 2,802 22 20 22 h-index citations g-index papers 22 22 22 3748 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	The reductive glycine pathway allows autotrophic growth of Desulfovibrio desulfuricans. Nature Communications, 2020, 11, 5090.	5.8	152
2	Multiple and flexible roles of facultative anaerobic bacteria in microaerophilic oleate degradation. Environmental Microbiology, 2020, 22, 3650-3659.	1.8	4
3	Prospects for harnessing biocide resistance for bioremediation and detoxification. Science, 2018, 360, 743-746.	6.0	114
4	Carbon nanotubes accelerate methane production in pure cultures of methanogens and in a syntrophic coculture. Environmental Microbiology, 2017, 19, 2727-2739.	1.8	127
5	Long-term performance and fouling analysis of full-scale direct nanofiltration (NF) installations treating anoxic groundwater. Journal of Membrane Science, 2014, 468, 339-348.	4.1	51
6	Archaeal (Per)Chlorate Reduction at High Temperature: An Interplay of Biotic and Abiotic Reactions. Science, 2013, 340, 85-87.	6.0	73
7	Metabolic response of <i><i><scp>A</scp>licycliphilus denitrificans</i> strain <scp>BC</scp> toward electron acceptor variation. Proteomics, 2013, 13, 2886-2894.</i>	1.3	13
8	Genome Analysis and Physiological Comparison of Alicycliphilus denitrificans Strains BC and K601T. PLoS ONE, 2013, 8, e66971.	1.1	32
9	Role of syntrophic microbial communities in high-rate methanogenic bioreactors. Water Science and Technology, 2012, 66, 352-362.	1.2	112
10	1,3â€Propanediol production from glycerol by a newly isolated <i>Trichococcus</i> strain. Microbial Biotechnology, 2012, 5, 573-578.	2.0	44
11	Effect of conventional chemical treatment on the microbial population in a biofouling layer of reverse osmosis systems. Water Research, 2011, 45, 405-416.	5.3	83
12	Degradation of BTEX by anaerobic bacteria: physiology and application. Reviews in Environmental Science and Biotechnology, 2010, 9, 359-385.	3.9	180
13	Electricity-mediated biological hydrogen production. Current Opinion in Microbiology, 2010, 13, 307-315.	2.3	61
14	Atypical one-carbon metabolism of an acetogenic and hydrogenogenic Moorella thermoacetica strain. Archives of Microbiology, 2009, 191, 123-131.	1.0	37
15	Growth of Pseudomonas chloritidismutans AW-1T on n-alkanes with chlorate as electron acceptor. Applied Microbiology and Biotechnology, 2009, 83, 739-747.	1.7	47
16	Citric acid wastewater as electron donor for biological sulfate reduction. Applied Microbiology and Biotechnology, 2009, 83, 957-963.	1.7	32
17	Long-term performance and microbial community analysis of a full-scale synthesis gas fed reactor treating sulfate- and zinc-rich wastewater. Applied Microbiology and Biotechnology, 2009, 84, 555-563.	1.7	22
18	Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nature Reviews Microbiology, 2009, 7, 568-577.	13.6	1,097

#	Article	IF	CITATION
19	A strictly anaerobic betaproteobacterium <i>Georgfuchsia toluolica</i> gen. nov., sp. nov. degrades aromatic compounds with Fe(III), Mn(IV) or nitrate as an electron acceptor. FEMS Microbiology Ecology, 2009, 70, 575-585.	1.3	105
20	Microbial diversity and community structure of a highly active anaerobic methaneâ€oxidizing sulfateâ€reducing enrichment. Environmental Microbiology, 2009, 11, 3223-3232.	1.8	39
21	Microaerobic and anaerobic metabolism of a <i>Methylocystis parvus</i> strain isolated from a denitrifying bioreactor. Environmental Microbiology Reports, 2009, 1, 442-449.	1.0	34
22	Exocellular electron transfer in anaerobic microbial communities. Environmental Microbiology, 2006, 8, 371-382.	1.8	343