Juan Jose Ruiz MartÃ-nez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1360580/publications.pdf

Version: 2024-02-01

430874 477307 48 943 18 29 citations h-index g-index papers 49 49 49 1129 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Performance of New Muchamiel Tomato Lines with Virus Resistance Genes Grafted onto Two Commercial Rootstocks. Agronomy, 2022, 12, 119.	3.0	O
2	Effect of low inputs and salinity on yield and quality $\hat{a} \in A$ 3 year study in virus-resistant tomato (Solanum lycopersicum L.) breeding lines and hybrids. Scientia Horticulturae, 2020, 260, 108889.	3.6	2
3	Metabolomic analysis of the effects of a commercial complex biostimulant on pepper crops. Food Chemistry, 2020, 310, 125818.	8.2	35
4	UMH1209 and UMH1155: New †Moruno Pera' Tomato Breeding Lines Resistant to Virus. Hortscience: A Publication of the American Society for Hortcultural Science, 2020, 55, 959-960.	1.0	O
5	UMH1400 and UMH1401: New Cherry Tomato Breeding Lines Resistant to Virus. Hortscience: A Publication of the American Society for Hortcultural Science, 2020, 55, 395-396.	1.0	1
6	Assessment of genetic diversity among local pea (Pisum sativum L.) accessions cultivated in the arid regions of Southern Tunisia using agro-morphological and SSR molecular markers. Genetic Resources and Crop Evolution, 2019, 66, 1189-1203.	1.6	24
7	Twenty Years of Tomato Breeding at EPSO-UMH: Transfer Resistance from Wild Types to Local Landraces—From the First Molecular Markers to Genotyping by Sequencing (GBS). Diversity, 2018, 10, 12.	1.7	12
8	Identification, introgression, and validation of fruit volatile QTLs from a red-fruited wild tomato species. Journal of Experimental Botany, 2017, 68, erw455.	4.8	61
9	Exploring New Alleles Involved in Tomato Fruit Quality in an Introgression Line Library of Solanum pimpinellifolium. Frontiers in Plant Science, 2016, 7, 1172.	3.6	50
10	Introgression of virus-resistance genes into traditional Spanish tomato cultivars (Solanum) Tj ETQq0 0 0 rgBT /O	verlock 10	O Tf 50 382 To
11	New Breeding Lines Resistant to Tomato Mosaic Virus and Tomato Spotted Wilt Virus within the â€`De la Pera' Tomato Type: UMH 1353 and UMH 1354. Hortscience: A Publication of the American Society for Hortcultural Science, 2016, 51, 456-458.	1.0	3
12	UMH 916, UMH 972, UMH 1093, UMH 1127, and UMH 1139: Four Fresh-market Breeding Lines Resistant to Viruses Within the Muchamiel Tomato Type. Hortscience: A Publication of the American Society for Hortcultural Science, 2015, 50, 927-929.	1.0	2
13	Morphological and genetic diversity among and within common bean (Phaseolus vulgaris L.) landraces from the Campania region (Southern Italy). Scientia Horticulturae, 2014, 180, 72-78.	3.6	37
14	UMH 1422 and UMH 1415: Two Fresh-market Tomato Breeding Lines Resistant to Tomato Mosaic Virus and Tomato Spotted Wilt Virus. Hortscience: A Publication of the American Society for Hortcultural Science, 2014, 49, 1465-1466.	1.0	2
15	Diversity and structure of a sample of traditional Italian and Spanish tomato accessions. Genetic Resources and Crop Evolution, 2013, 60, 789-798.	1.6	29
16	Morphological and molecular analysis of natural hybrids between the diploid <i>Centaurea aspera</i> L. and the tetraploid <i>C. seridis</i> L. (Compositae). Plant Biosystems, 2012, 146, 86-100.	1.6	11
17	Modelling perceived quality of tomato by structural equation analysis. British Food Journal, 2012, 114, 1414-1431.	2.9	20
18	INTROGRESSING RESISTANCE GENES INTO TRADITIONAL TOMATO CULTIVARS: EFFECTS ON YIELD AND QUALITY. Acta Horticulturae, 2012, , 29-33.	0.2	32

#	Article	IF	CITATIONS
19	GENETIC DIVERSITY OF INTRODUCED ACCESSIONS OF FOUR SPECIES OF BANKSIA (PROTEACEAE) AS REVEALED BY RAPDS AND TBP MARKERS. Acta Horticulturae, 2012, , 751-756.	0.2	О
20	Quality assessment of tomato landraces and virusâ€resistant breeding lines: quick estimation by near infrared reflectance spectroscopy. Journal of the Science of Food and Agriculture, 2012, 92, 1178-1185.	3.5	11
21	SIMILAR YIELD REDUCTIONS UNDER DIFFERENT GROWING CONDITIONS CAUSED BY THE INTROGRESSION OF GENETIC RESISTANCE TO TYLCV INTO TRADITIONAL TOMATO CULTIVARS. Acta Horticulturae, 2012, , 149-152.	0.2	2
22	UMH 1203, a Multiple Virus-resistant Fresh-market Tomato Breeding Line for Open-field Conditions. Hortscience: A Publication of the American Society for Hortcultural Science, 2012, 47, 124-125.	1.0	4
23	SCREENING A DIVERSE COLLECTION OF HEIRLOOM TOMATO CULTIVARS FOR QUALITY AND FUNCTIONAL ATTRIBUTES. Acta Horticulturae, 2011, , 551-555.	0.2	2
24	UMH 1200, a Breeding Line within the Muchamiel Tomato Type Resistant to Three Viruses. Hortscience: A Publication of the American Society for Hortcultural Science, 2011, 46, 1054-1055.	1.0	7
25	Benomyl sensitivity assays and species-specific PCR reactions highlight association of two Colletotrichum gloeosporioides types and C. acutatum with rumple disease on Primofiori lemons. European Journal of Plant Pathology, 2010, 127, 399-405.	1.7	11
26	Comparative postâ€harvest behaviour of traditional and virusâ€resistant <i>Muchamiel</i> tomatoes. Journal of the Science of Food and Agriculture, 2010, 90, 1056-1062.	3.5	9
27	Characterization of Spanish Tomatoes using Aroma Composition and Discriminant Analysis. Food Science and Technology International, 2009, 15, 47-55.	2.2	19
28	Volatile compounds of traditional and virus-resistant breeding lines of Muchamiel tomatoes. European Food Research and Technology, 2009, 230, 315-323.	3.3	51
29	Use of Composts Derived from Winery Wastes in Tomato Crop. Communications in Soil Science and Plant Analysis, 2009, 40, 445-452.	1.4	7
30	A competitive strategy for vegetable products: traditional varieties of tomato in the local market. Spanish Journal of Agricultural Research, 2009, 7, 294.	0.6	31
31	Analysis of flavor volatile compounds by dynamic headspace in traditional and hybrid cultivars of Spanish tomatoes. European Food Research and Technology, 2006, 222, 536-542.	3.3	35
32	Effect of Recent Genetic Improvement on Some Analytical Parameters of Tomato Fruit Quality. Communications in Soil Science and Plant Analysis, 2006, 37, 2647-2658.	1.4	9
33	Evaluation of amplified fragment length polymorphism and simple sequence repeats for tomato germplasm fingerprinting: utility for grouping closely related traditional cultivars. Genome, 2006, 49, 648-656.	2.0	89
34	Quantitative analysis of flavour volatiles detects differences among closely related traditional cultivars of tomato. Journal of the Science of Food and Agriculture, 2005, 85, 54-60.	3.5	51
35	Micronutrient Composition and Quality Characteristics of Traditional Tomato Cultivars in Southeast Spain. Communications in Soil Science and Plant Analysis, 2005, 36, 649-660.	1.4	13
36	Genetic Variability and Relationship of Closely Related Spanish Traditional Cultivars of Tomato as Detected by SRAP and SSR Markers. Journal of the American Society for Horticultural Science, 2005, 130, 88-94.	1.0	49

#	Article	IF	CITATIONS
37	VEGETABLE CROP DIVERSIFICATION IN AREAS AFFECTED BY SALINITY: THE CASE OF PEPINO (SOLANUM) Tj ETQq1	l 1 0.7843 0.2	14 rgBT / 🕠
38	Widening the genetic basis of virus resistance in tomato. Scientia Horticulturae, 2002, 94, 73-89.	3.6	52
39	Quantitative analysis of the volatile aroma components of pepino fruit by purge-and-trap and gas chromatography. Journal of the Science of Food and Agriculture, 2002, 82, 1182-1188.	3.5	15
40	Identification of Markers Linked to a Celery Mosaic Virus Resistance Gene in Celery. Journal of the American Society for Horticultural Science, 2001, 126, 432-435.	1.0	12
41	High temperatures and parthenocarpic fruit set: Misunderstandings about the pepino breeding system. Journal of Horticultural Science and Biotechnology, 2000, 75, 161-166.	1.9	5
42	Variation in carbohydrate content during ripening in two clones of pepino. Journal of the Science of Food and Agriculture, 2000, 80, 1985-1991.	3.5	12
43	Variation in carbohydrate content during ripening in two clones of pepino. Journal of the Science of Food and Agriculture, 2000, 80, 1985-1991.	3.5	0
44	Yield, earliness and fruit quality of pepino clones and their hybrids in the autumn-winter cycle. Journal of the Science of Food and Agriculture, 1999, 79, 340-346.	3.5	14
45	The Inheritance of Parthenocarpy and Associated Traits in Pepino. Journal of the American Society for Horticultural Science, 1998, 123, 376-380.	1.0	14
46	`Sweet Round' and `Sweet Long': Two Pepino Cultivars for Mediterranean Climates. Hortscience: A Publication of the American Society for Hortcultural Science, 1997, 32, 751-752.	1.0	19
47	The pepino(Solanum muricatum, Solanaceae): A "New―crop with a history. Economic Botany, 1996, 50, 355-368.	1.7	51
48	Advancing the Tamarillo Harvest by Induced Postharvest Ripening. Hortscience: A Publication of the American Society for Hortcultural Science, 1996, 31, 109-111.	1.0	9