Dawei Fan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1360429/publications.pdf Version: 2024-02-01

ΠΑλλει Ελλι

#	Article	IF	CITATIONS
1	Self-consistent thermodynamic parameters of pyrope and almandine at high-temperature and high-pressure conditions: Implication on the adiabatic temperature gradient. Physics of the Earth and Planetary Interiors, 2022, 322, 106789.	1.9	5
2	Effect of Thermoelastic Properties of the Pyrope-Almandine Solid Solutions on the Entrapment Pressure of Garnet-Related Elastic Geobarometer. Frontiers in Earth Science, 2022, 9, .	1.8	0
3	Phase Transitions of Feâ€; Al―and Caâ€Bearing Orthopyroxenes at High Pressure and High Temperature: Implications for Metastable Orthopyroxenes in Stagnant Slabs. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	2
4	Thermal equation of state of the main minerals of eclogite: Constraining the density evolution of eclogite during the delamination process in Tibet. Solid Earth, 2022, 13, 745-759.	2.8	1
5	Thermal equation of state of Cr-pyrope: implications for entrapment pressure of Cr-pyrope inclusion in diamond. Contributions To Mineralogy and Petrology, 2022, 177, .	3.1	0
6	Thermoelasticity and stability of natural epidote at high pressure and high temperature: Implications for water transport during cold slab subduction. Geoscience Frontiers, 2021, 12, 921-928.	8.4	7
7	Constraining the density evolution during destruction of the lithospheric mantle in the eastern North China Craton. Gondwana Research, 2021, 91, 18-30.	6.0	5
8	Self-Consistent Thermodynamic Parameters of Diopside at High Temperatures and High Pressures: Implications for the Adiabatic Geotherm of an Eclogitic Upper Mantle. Minerals (Basel, Switzerland), 2021, 11, 1322.	2.0	2
9	Topaz, a Potential Volatile-Carrier in Cold Subduction Zone: Constraint from Synchrotron X-ray Diffraction and Raman Spectroscopy at High Temperature and High Pressure. Minerals (Basel,) Tj ETQq1 1 0.78	3431 ±.o gBT	/Oværlock 10
10	Phase Transition of Enstatiteâ€Ferrosilite Solid Solutions at High Pressure and High Temperature: Constraints on Metastable Orthopyroxene in Cold Subduction. Geophysical Research Letters, 2020, 47, e2020GL087363.	4.0	12
11	Elasticity of single-crystal Fe-enriched diopside at high-pressure conditions: Implications for the origin of upper mantle low-velocity zones. American Mineralogist, 2020, 105, 363-374.	1.9	5
12	Investigation of the crystal structure of a low water content hydrous olivine to 29.9 GPa: A high-pressure single-crystal X-ray diffraction study. American Mineralogist, 2020, 105, 1857-1865.	1.9	7
13	Elasticity of single-crystal low water content hydrous pyrope at high-pressure and high-temperature conditions. American Mineralogist, 2019, 104, 1022-1031.	1.9	9
14	Pressure-temperature phase diagram and thermoelastic behavior of manganese fluoride up to 13.1 GPa and 700 K. Materials Research Express, 2019, 6, 116115.	1.6	1
15	High-pressure in-situ X-ray diffraction and Raman spectroscopy of Ca ₂ AlFeO ₅ brownmillerite. High Pressure Research, 2019, 39, 92-105.	1.2	4
16	Elasticity of single-crystal periclase at high pressure and temperature: The effect of iron on the elasticity and seismic parameters of ferropericlase in the lower mantle. American Mineralogist, 2019, 104, 262-275.	1.9	27
17	Crystal size distribution of amphibole grown from hydrous basaltic melt at 0.6–2.6 GPa and 860–970 °C. American Mineralogist, 2019, 104, 525-535.	1.9	8
18	Phase transition and thermoelastic behavior of barite-group minerals at high-pressure and high-temperature conditions. Physics and Chemistry of Minerals, 2019, 46, 607-621.	0.8	6

Dawei Fan

#	Article	IF	CITATIONS
19	Thermoelastic Properties of Eclogitic Garnets and Omphacites: Implications for Deep Subduction of Oceanic Crust and Density Anomalies in the Upper Mantle. Geophysical Research Letters, 2019, 46, 179-188.	4.0	24
20	Compressional behavior of natural eclogitic zoisite by synchrotron X-ray single-crystal diffraction to 34 GPa. Physics and Chemistry of Minerals, 2019, 46, 333-341.	0.8	3
21	Thermodynamic properties of San Carlos olivine at high temperature and high pressure. Acta Geochimica, 2018, 37, 171-179.	1.7	11
22	Phase Transitions in Orthoenstatite and Subduction Zone Dynamics: Effects of Water and Transition Metal Ions. Journal of Geophysical Research: Solid Earth, 2018, 123, 2723-2737.	3.4	20
23	Compressibility and expansivity of anglesite (PbSO4) using in situ synchrotron X-ray diffraction at high-temperature conditions. Physics and Chemistry of Minerals, 2018, 45, 883-893.	0.8	7
24	FRACTAL ANALYSIS OF AMPHIBOLE AGGREGATION GROWTH FROM A BASALTIC MELT AND RESIDUAL MELT AT HIGH PRESSURE AND HIGH TEMPERATURE. Fractals, 2018, 26, 1850032.	3.7	0
25	Effects of water on P-V-T equation of state of pyrope. Physics of the Earth and Planetary Interiors, 2017, 267, 9-18.	1.9	9
26	Experimental evidence for the survival of augite to transition zone depths, and implications for subduction zone dynamics. American Mineralogist, 2017, 102, 1516-1524.	1.9	11
27	Isosymmetric pressureâ€induced bonding increase changes compression behavior of clinopyroxenes across jadeiteâ€negirine solid solution in subduction zones. Journal of Geophysical Research: Solid Earth, 2017, 122, 142-157.	3.4	11
28	Thermoelastic properties of grossular–andradite solid solution at high pressures and temperatures. Physics and Chemistry of Minerals, 2017, 44, 137-147.	0.8	8
29	High-pressure compressibility and vibrational properties of (Ca,Mn)CO ₃ . American Mineralogist, 2016, 101, 2723-2730.	1.9	29
30	High-pressure behavior of natural single-crystal epidote and clinozoisite up to 40 GPa. Physics and Chemistry of Minerals, 2016, 43, 649-659.	0.8	16
31	Influence of Hydrogen on the Thermoelastic Properties of the Major Rock-Forming Minerals in the Upper Mantle. Acta Geologica Sinica, 2016, 90, 1933-1934.	1.4	7
32	Thermal equation of state of natural tourmaline at high pressure and temperature. Physics and Chemistry of Minerals, 2016, 43, 315-326.	0.8	18
33	Hierarchical densification and negative thermal expansion in Ce-based metallic glass under high pressure. Nature Communications, 2015, 6, 5703.	12.8	38
34	High-pressure study of azurite Cu3(CO3)2(OH)2 by synchrotron radiation X-ray diffraction and Raman spectroscopy. Physics and Chemistry of Minerals, 2015, 42, 805-816.	0.8	11
35	Elasticity of single-crystal olivine at high pressures and temperatures. Earth and Planetary Science Letters, 2015, 426, 204-215.	4.4	61
36	P-V-T equation of state of Ca3Cr2Si3O12 uvarovite garnet by using a diamond-anvil cell and in-situ synchrotron X-ray diffraction. American Mineralogist, 2015, 100, 588-597.	1.9	10

Dawei Fan

#	Article	IF	CITATIONS
37	Compressibility of carbonophosphate bradleyite Na3Mg(CO3)(PO4) by X-ray diffraction and Raman spectroscopy. Physics and Chemistry of Minerals, 2015, 42, 191-201.	0.8	16
38	Compressibility and equation of state of beryl (Be3Al2Si6O18) by using a diamond anvil cell and in situ synchrotron X-ray diffraction. Physics and Chemistry of Minerals, 2015, 42, 529-539.	0.8	18
39	Determination of the full elastic tensor of single crystals using shear wave velocities by Brillouin spectroscopy. American Mineralogist, 2015, 100, 2590-2601.	1.9	10
40	P–V–T equation of state of spessartine–almandine solid solution measured using a diamond anvil cell and in situ synchrotron X-ray diffraction. Physics and Chemistry of Minerals, 2015, 42, 63-72.	0.8	9
41	High-pressure elastic behavior of Ca4La6(SiO4)6(OH)2 a synthetic rare-earth silicate apatite: a powder X-ray diffraction study up to 9.33ÂGPa. Physics and Chemistry of Minerals, 2014, 41, 85-90.	0.8	1
42	Equation of state of adamite up to 11ÂGPa: a synchrotron X-ray diffraction study. Physics and Chemistry of Minerals, 2014, 41, 547-554.	0.8	5
43	High Pressure Elastic Behavior of Synthetic Mg ₃ Y ₂ (SiO ₄) ₃ Garnet up to 9 GPa. Advances in Materials Science and Engineering, 2013, 2013, 1-6.	1.8	8
44	Measurements of wave velocity and electrical conductivity of an amphibolite from southwestern margin of the Tarim Basin at pressures to 1.0 GPa and temperatures to 700 °C: comparison with field observations. Geophysical Journal International, 2011, 187, 1393-1404.	2.4	18
45	A simple external resistance heating diamond anvil cell and its application for synchrotron radiation x-ray diffraction. Review of Scientific Instruments, 2010, 81, 053903.	1.3	29
46	Thermal equation of state of natural chromium spinel up to 26.8 GPa and 628 K. Journal of Materials Science, 2008, 43, 5546-5550.	3.7	16