Zhenyuan Miao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1360027/publications.pdf

Version: 2024-02-01

75	3,469	31	57
papers	citations	h-index	g-index
80	80	80	4899
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Chalcone: A Privileged Structure in Medicinal Chemistry. Chemical Reviews, 2017, 117, 7762-7810.	23.0	938
2	Scaffold Diversity Inspired by the Natural Product Evodiamine: Discovery of Highly Potent and Multitargeting Antitumor Agents. Journal of Medicinal Chemistry, 2015, 58, 6678-6696.	2.9	156
3	Structure-Based Optimization of Azole Antifungal Agents by CoMFA, CoMSIA, and Molecular Docking. Journal of Medicinal Chemistry, 2006, 49, 2512-2525.	2.9	154
4	State-of-the-art strategies for targeting protein–protein interactions by small-molecule inhibitors. Chemical Society Reviews, 2015, 44, 8238-8259.	18.7	132
5	Discovery, Synthesis, and Biological Evaluation of Orally Active Pyrrolidone Derivatives as Novel Inhibitors of p53–MDM2 Protein–Protein Interaction. Journal of Medicinal Chemistry, 2012, 55, 9630-9642.	2.9	117
6	Small molecule-drug conjugates: A novel strategy for cancer-targeted treatment. European Journal of Medicinal Chemistry, 2019, 163, 883-895.	2.6	115
7	Three-Dimensional Model of Lanosterol $14\hat{l}\pm$ -Demethylase from <i>Cryptococcus neoformans</i> Active-Site Characterization and Insights into Azole Binding. Antimicrobial Agents and Chemotherapy, 2009, 53, 3487-3495.	1.4	95
8	Meeting Organocatalysis with Drug Discovery: Asymmetric Synthesis of 3,3′-Spirooxindoles Fused with Tetrahydrothiopyrans as Novel p53-MDM2 Inhibitors. Organic Letters, 2016, 18, 1028-1031.	2.4	77
9	Design, synthesis and antifungal activity of novel triazole derivatives containing substituted 1,2,3-triazole-piperdine side chains. European Journal of Medicinal Chemistry, 2014, 82, 490-497.	2.6	68
10	Divergent Cascade Construction of Skeletally Diverse "Privileged―Pyrazoleâ€Derived Molecular Architectures. European Journal of Organic Chemistry, 2015, 2015, 2030-2037.	1.2	67
11	Discovery of Novel Multiacting Topoisomerase I/II and Histone Deacetylase Inhibitors. ACS Medicinal Chemistry Letters, 2015, 6, 239-243.	1.3	64
12	Small Molecules Simultaneously Inhibiting p53-Murine Double Minute 2 (MDM2) Interaction and Histone Deacetylases (HDACs): Discovery of Novel Multitargeting Antitumor Agents. Journal of Medicinal Chemistry, 2018, 61, 7245-7260.	2.9	59
13	New azoles with potent antifungal activity: Design, synthesis and molecular docking. European Journal of Medicinal Chemistry, 2009, 44, 4218-4226.	2.6	58
14	Small molecules inhibiting Keap1–Nrf2 protein–protein interactions: a novel approach to activate Nrf2 function. MedChemComm, 2017, 8, 286-294.	3.5	55
15	Chlorin p ₆ -Based Water-Soluble Amino Acid Derivatives as Potent Photosensitizers for Photodynamic Therapy. Journal of Medicinal Chemistry, 2016, 59, 4999-5010.	2.9	53
16	Updated Research and Applications of Small Molecule Inhibitors of Keap1-Nrf2 Protein-Protein Interaction: a Review. Current Medicinal Chemistry, 2014, 21, 1861-1870.	1.2	53
17	Design and synthesis of antifungal benzoheterocyclic derivatives by scaffold hopping. European Journal of Medicinal Chemistry, 2011, 46, 1706-1712.	2.6	52
18	Discovery of highly potent triazole antifungal derivatives by heterocycle-benzene bioisosteric replacement. European Journal of Medicinal Chemistry, 2013, 64, 16-22.	2.6	50

#	Article	IF	Citations
19	Novel Carboline Derivatives as Potent Antifungal Lead Compounds: Design, Synthesis, and Biological Evaluation. ACS Medicinal Chemistry Letters, 2014, 5, 506-511.	1.3	49
20	Double-Edged Swords as Cancer Therapeutics: Novel, Orally Active, Small Molecules Simultaneously Inhibit p53–MDM2 Interaction and the NF-κB Pathway. Journal of Medicinal Chemistry, 2014, 57, 567-577.	2.9	45
21	Identification of the Raf kinase inhibitor TAKâ€632 and its analogues as potent inhibitors of necroptosis by targeting RIPK1 and RIPK3. British Journal of Pharmacology, 2019, 176, 2095-2108.	2.7	41
22	<i>N</i> -(7-Cyano-6-(4-fluoro-3-(2-(3-(trifluoromethyl)phenyl)acetamido)phenoxy)benzo[⟨i⟩d⟨/i⟩]thiazol-2-yl)cy (TAK-632) Analogues as Novel Necroptosis Inhibitors by Targeting Receptor-Interacting Protein Kinase 3 (RIPK3): Synthesis, Structureâ€"Activity Relationships, and in Vivo Efficacy. Journal of Medicinal Chemistry, 2019, 62, 6665-6681.	clopropa 2.9	necarboxamid 39
23	A New Strategy To Improve the Metabolic Stability of Lactone: Discovery of (20 <i>S</i> ,21 <i>S</i>)-21-Fluorocamptothecins as Novel, Hydrolytically Stable Topoisomerase I Inhibitors. Journal of Medicinal Chemistry, 2013, 56, 7902-7910.	2.9	38
24	Improved Model of Lanosterol 14αâ€Demethylase by Ligandâ€Supported Homology Modeling: Validation by Virtual Screening and Azole Optimization. ChemMedChem, 2010, 5, 390-397.	1.6	36
25	Structure–activity relationship and antitumor activity of thio-benzodiazepines as p53–MDM2 protein–protein interaction inhibitors. European Journal of Medicinal Chemistry, 2012, 56, 10-16.	2.6	36
26	An Indole–Chalcone Inhibits Multidrug-Resistant Cancer Cell Growth by Targeting Microtubules. Molecular Pharmaceutics, 2018, 15, 3892-3900.	2.3	36
27	Discovery of highly potent novel antifungal azoles by structure-based rational design. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 5965-5969.	1.0	34
28	Design, synthesis and biological activity of piperlongumine derivatives as selective anticancer agents. European Journal of Medicinal Chemistry, 2014, 82, 545-551.	2.6	33
29	Novel benzothiazole derivatives with a broad antifungal spectrum: design, synthesis and structure–activity relationships. MedChemComm, 2013, 4, 1551.	3.5	32
30	Fragment-growing guided design of Keap1-Nrf2 protein-protein interaction inhibitors for targeting myocarditis. Free Radical Biology and Medicine, 2018, 117, 228-237.	1.3	32
31	Design, Synthesis, and Antifungal Activity of Novel Conformationally Restricted Triazole Derivatives. Archiv Der Pharmazie, 2009, 342, 732-739.	2.1	31
32	Structure-based rational design, synthesis and antifungal activity of oxime-containing azole derivatives. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 2942-2945.	1.0	31
33	Structureâ€Based Design, Synthesis, and Antifungal Activity of New Triazole Derivatives. Chemical Biology and Drug Design, 2011, 78, 309-313.	1.5	29
34	Scaffold hopping of sampangine: Discovery of potent antifungal lead compound against Aspergillus fumigatus and Cryptococcus neoformans. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4090-4094.	1.0	27
35	Trifluoromethyl-promoted homocamptothecins: Synthesis and biological activity. European Journal of Medicinal Chemistry, 2010, 45, 2726-2732.	2.6	26
36	Synthesis and biological evaluation of thio-benzodiazepines as novel small molecule inhibitors of the p53–MDM2 protein–protein interaction. European Journal of Medicinal Chemistry, 2011, 46, 5654-5661.	2.6	26

#	Article	IF	Citations
37	Discovery of benzothiazole derivatives as novel non-sulfamide NEDD8 activating enzyme inhibitors by target-based virtual screening. European Journal of Medicinal Chemistry, 2017, 133, 174-183.	2.6	26
38	Structural Biology-Inspired Discovery of Novel KRAS–PDEÎ′Inhibitors. Journal of Medicinal Chemistry, 2017, 60, 9400-9406.	2.9	26
39	New homocamptothecins: Synthesis, antitumor activity, and molecular modeling. Bioorganic and Medicinal Chemistry, 2008, 16, 1493-1510.	1.4	23
40	Synthesis and Biological Evaluation of Novel Homocamptothecins Conjugating with Dihydropyrimidine Derivatives as Potent Topoisomerase I Inhibitors. Archiv Der Pharmazie, 2011, 344, 726-734.	2.1	23
41	From Antidiabetic to Antifungal: Discovery of Highly Potent Triazole–Thiazolidinedione Hybrids as Novel Antifungal Agents. ChemMedChem, 2014, 9, 2639-2646.	1.6	21
42	Radiosensitization of human pancreatic cancer by piperlongumine analogues. Chinese Chemical Letters, 2021, 32, 1197-1201.	4.8	21
43	Phosphate ester derivatives of homocamptothecin: Synthesis, solution stabilities and antitumor activities. Bioorganic and Medicinal Chemistry, 2010, 18, 3140-3146.	1.4	19
44	Synthesis and evaluation of 9-benzylideneamino derivatives of homocamptothecin as potent inhibitors of DNA topoisomerase I. European Journal of Medicinal Chemistry, 2010, 45, 2223-2228.	2.6	19
45	Design, Synthesis and Biological Evaluation of Sulfamide and Triazole Benzodiazepines as Novel p53-MDM2 Inhibitors. International Journal of Molecular Sciences, 2014, 15, 15741-15753.	1.8	19
46	Evolutionary trace analysis of CYP51 family: implication for site-directed mutagenesis and novel antifungal drug design. Journal of Molecular Modeling, 2010, 16, 279-284.	0.8	18
47	Design, synthesis and biological evaluation of novel antitumor spirotetrahydrothiopyran–oxindole derivatives as potent p53-MDM2 inhibitors. Bioorganic and Medicinal Chemistry, 2017, 25, 5268-5277.	1.4	17
48	Novel non-trimethoxylphenyl piperlongumine derivatives selectively kill cancer cells. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2308-2312.	1.0	16
49	An alternative route for synthesis of o-trifluoroacetylanilines as useful fluorine-containing intermediates. Journal of Fluorine Chemistry, 2010, 131, 800-804.	0.9	15
50	Synthesis and biological evaluation of novel 7-acyl homocamptothecins asÂTopoisomerase I inhibitors. European Journal of Medicinal Chemistry, 2011, 46, 2408-2414.	2.6	15
51	Design, synthesis and structure–activity relationships of new triazole derivatives containing N-substituted phenoxypropylamino side chains. European Journal of Medicinal Chemistry, 2012, 53, 292-299.	2.6	15
52	Homobivalent, Trivalent, and Covalent PROTACs: Emerging Strategies for Protein Degradation. Journal of Medicinal Chemistry, 2022, 65, 8798-8827.	2.9	15
53	Discovery of 1-arylpyrrolidone derivatives as potent p53–MDM2 inhibitors based on molecule fusing strategy. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2648-2650.	1.0	14
54	Structure–activity relationships of tetrahydrocarbazole derivatives as antifungal lead compounds. MedChemComm, 2013, 4, 353-362.	3.5	13

#	Article	IF	Citations
55	Synthesis and preliminary bioevaluation of novel E-ring modified acetal analog of camptothecin as cytotoxic agents. European Journal of Medicinal Chemistry, 2012, 56, 1-9.	2.6	12
56	Discovery of 7â€Methylâ€10â€Hydroxyhomocamptothecins with 1,2,3â€Triazole Moiety as Potent Topoisomeras I Inhibitors. Chemical Biology and Drug Design, 2016, 88, 398-403.	e 1.5	12
57	Discovery of natural product ellagic acid as a potent CD73 and CD39 dual inhibitor. Bioorganic and Medicinal Chemistry Letters, 2021, 34, 127758.	1.0	11
58	A novel drug discovery strategy: Mechanistic investigation of an enantiomeric antitumor agent targeting dual p53 and NF-κB pathways. Oncotarget, 2014, 5, 10830-10839.	0.8	11
59	<i>β</i> â€Alanineâ€DBU: A Highly Efficient Catalytic System for Knoevenagelâ€Doebner Reaction under Mild Conditions. Chinese Journal of Chemistry, 2012, 30, 139-143.	2.6	10
60	Discovery of highly potent triazoleantifungal agents with piperidine-oxadiazole side chains. MedChemComm, 2015, 6, 653-664.	3.5	10
61	Synthesis and biological activities of fluorinated 10-hydroxycamptothecin and SN38. Journal of Fluorine Chemistry, 2014, 157, 48-51.	0.9	9
62	The discovery and characterization of a novel scaffold as a potent hepatitis C virus inhibitor. Chemical Communications, 2016, 52, 3340-3343.	2.2	9
63	Discovery of highly potent antifungal triazoles by structure-based lead fusion. MedChemComm, 2011, 2, 1066.	3.5	8
64	Topoisomerase I Inhibitors Derived from Natural Products: Structure–Activity Relationships and Antitumor Potency. Studies in Natural Products Chemistry, 2016, , 1-28.	0.8	8
65	Discovery and optimization of betulinic acid derivatives as novel potent CD73 inhibitors. Bioorganic and Medicinal Chemistry, 2022, 59, 116672.	1.4	8
66	Synthesis and Biological Evaluation of 7â€Alkenyl Homocamptothecins as Potent Topoisomerase I Inhibitors. Chemistry and Biodiversity, 2012, 9, 1084-1094.	1.0	7
67	Synthesis of 9â€(Heteroarylmethylidene)amino Derivatives of Homocamptothecin with Biological Activities. Chemistry and Biodiversity, 2011, 8, 1266-1273.	1.0	6
68	Topoisomerase lâ€Mediated Antiproliferative Activity of 10â€Substituted and 12â€Substituted Homocamptothecins. Chemistry and Biodiversity, 2011, 8, 1539-1549.	1.0	5
69	Synthesis via the Mannich Reaction and Biological Activity of Novel Fluorinated Camptothecin Derivatives. Chemistry of Heterocyclic Compounds, 2021, 57, 704-708.	0.6	5
70	Discovery of a Potent Botulinum Neurotoxin A Inhibitor <scp>ZM299</scp> with Effective Protections in Botulism Mice. Chinese Journal of Chemistry, 2022, 40, 357-364.	2.6	5
71	Design, Synthesis and Biological Activity of (20 <i>>S</i> ,21 <i>S</i>)â€₹ yclohexylâ€21‶uorocamptothecin Carbamates as Potential Antitumor Agents. Chemistry and Biodiversity, 2020, 17, e2000068.	1.0	4
72	Discovery of 3-peptide substituted arenobufagin derivatives as potent antitumor agents with low cardiotoxicity. Steroids, 2021, 166, 108772.	0.8	4

ZHENYUAN MIAO

#	Article	IF	CITATIONS
73	Design, synthesis, and biological evaluation of novel trimethoxyindole derivatives derived from natural products. Monatshefte Für Chemie, 2019, 150, 1545-1552.	0.9	3
74	Asymmetric Synthesis, Antifungal Activity and Molecular Modeling of Iodiconazole Isomers. Chinese Journal of Chemistry, 2013, 31, 1139-1143.	2.6	2
75	Synthesis and Biological Assays of 9â€(Acylamino)homocamptothecins as DNA Topoisomerase I Inhibitors. Chemistry and Biodiversity, 2013, 10, 1804-1815.	1.0	1