Yanming Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1359979/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inverted Polymer Solar Cells Integrated with a Lowâ€Temperatureâ€Annealed Solâ€Gelâ€Derived ZnO Film as an Electron Transport Layer. Advanced Materials, 2011, 23, 1679-1683.	21.0	1,445
2	Solution-processed small-molecule solar cells with 6.7% efficiency. Nature Materials, 2012, 11, 44-48.	27.5	1,437
3	Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nature Energy, 2021, 6, 605-613.	39.5	1,307
4	Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nature Materials, 2022, 21, 656-663.	27.5	1,214
5	High-Performance Electron Acceptor with Thienyl Side Chains for Organic Photovoltaics. Journal of the American Chemical Society, 2016, 138, 4955-4961.	13.7	915
6	A Facile Planar Fused-Ring Electron Acceptor for As-Cast Polymer Solar Cells with 8.71% Efficiency. Journal of the American Chemical Society, 2016, 138, 2973-2976.	13.7	885
7	High-Performance Solution-Processed Non-Fullerene Organic Solar Cells Based on Selenophene-Containing Perylene Bisimide Acceptor. Journal of the American Chemical Society, 2016, 138, 375-380.	13.7	643
8	Efficient, Air‣table Bulk Heterojunction Polymer Solar Cells Using MoO _x as the Anode Interfacial Layer. Advanced Materials, 2011, 23, 2226-2230.	21.0	587
9	Improved High-Efficiency Organic Solar Cells via Incorporation of a Conjugated Polyelectrolyte Interlayer. Journal of the American Chemical Society, 2011, 133, 8416-8419.	13.7	540
10	Non-Fullerene-Acceptor-Based Bulk-Heterojunction Organic Solar Cells with Efficiency over 7%. Journal of the American Chemical Society, 2015, 137, 11156-11162.	13.7	490
11	Singleâ€Junction Organic Solar Cells Based on a Novel Wideâ€Bandgap Polymer with Efficiency of 9.7%. Advanced Materials, 2015, 27, 2938-2944.	21.0	487
12	Three-Bladed Rylene Propellers with Three-Dimensional Network Assembly for Organic Electronics. Journal of the American Chemical Society, 2016, 138, 10184-10190.	13.7	449
13	High mobility emissive organic semiconductor. Nature Communications, 2015, 6, 10032.	12.8	420
14	Polymer Donors for Highâ€Performance Nonâ€Fullerene Organic Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 4442-4453.	13.8	361
15	Mapping Polymer Donors toward High‣fficiency Fullerene Free Organic Solar Cells. Advanced Materials, 2017, 29, 1604155.	21.0	360
16	A Wellâ€Mixed Phase Formed by Two Compatible Nonâ€Fullerene Acceptors Enables Ternary Organic Solar Cells with Efficiency over 18.6%. Advanced Materials, 2021, 33, e2101733.	21.0	354
17	Recent Advances in Wideâ€Bandgap Photovoltaic Polymers. Advanced Materials, 2017, 29, 1605437.	21.0	276
18	Optimized Fibril Network Morphology by Precise Sideâ€Chain Engineering to Achieve Highâ€Performance Bulkâ€Heterojunction Organic Solar Cells. Advanced Materials, 2018, 30, e1707353.	21.0	271

#	Article	IF	CITATIONS
19	Ternary Organic Solar Cells Based on Two Compatible Nonfullerene Acceptors with Power Conversion Efficiency >10%. Advanced Materials, 2016, 28, 10008-10015.	21.0	254
20	Fineâ€Tuning of Molecular Packing and Energy Level through Methyl Substitution Enabling Excellent Small Molecule Acceptors for Nonfullerene Polymer Solar Cells with Efficiency up to 12.54%. Advanced Materials, 2018, 30, 1706124.	21.0	253
21	Morphology Control Enables Efficient Ternary Organic Solar Cells. Advanced Materials, 2018, 30, e1803045.	21.0	243
22	Ternary Organic Solar Cells with Efficiency >16.5% Based on Two Compatible Nonfullerene Acceptors. Advanced Materials, 2019, 31, e1905645.	21.0	240
23	Optimized active layer morphology toward efficient and polymer batch insensitive organic solar cells. Nature Communications, 2020, 11, 2855.	12.8	237
24	A unified description of non-radiative voltage losses in organic solar cells. Nature Energy, 2021, 6, 799-806.	39.5	235
25	Alkyl Sideâ€Chain Engineering in Wideâ€Bandgap Copolymers Leading to Power Conversion Efficiencies over 10%. Advanced Materials, 2017, 29, 1604251.	21.0	213
26	Alloy Acceptor: Superior Alternative to PCBM toward Efficient and Stable Organic Solar Cells. Advanced Materials, 2016, 28, 8021-8028.	21.0	207
27	A Novel Thiophene-Fused Ending Group Enabling an Excellent Small Molecule Acceptor for High-Performance Fullerene-Free Polymer Solar Cells with 11.8% Efficiency. Solar Rrl, 2017, 1, 1700044.	5.8	198
28	Asymmetric Nonfullerene Small Molecule Acceptors for Organic Solar Cells. Advanced Energy Materials, 2019, 9, 1900999.	19.5	190
29	Solutionâ€Processed Organic Solar Cells with High Open ircuit Voltage of 1.3 V and Low Nonâ€Radiative Voltage Loss of 0.16 V. Advanced Materials, 2020, 32, e2002122.	21.0	168
30	Structure Evolution of Oligomer Fusedâ€Ring Electron Acceptors toward High Efficiency of Asâ€Cast Polymer Solar Cells. Advanced Energy Materials, 2016, 6, 1600854.	19.5	152
31	Highly Efficient Parallel-Like Ternary Organic Solar Cells. Chemistry of Materials, 2017, 29, 2914-2920.	6.7	152
32	Organic Solar Cells Based on a 2D Benzo[1,2â€ <i>b</i> :4,5â€ <i>b</i> ′]difuranâ€Conjugated Polymer with Highâ€Power Conversion Efficiency. Advanced Materials, 2015, 27, 6969-6975.	21.0	151
33	Ternary Organic Solar Cells Based on Two Highly Efficient Polymer Donors with Enhanced Power Conversion Efficiency. Advanced Energy Materials, 2016, 6, 1502109.	19.5	147
34	Vertically optimized phase separation with improved exciton diffusion enables efficient organic solar cells with thick active layers. Nature Communications, 2022, 13, 2369.	12.8	122
35	A facile strategy for third-component selection in non-fullerene acceptor-based ternary organic solar cells. Energy and Environmental Science, 2021, 14, 5009-5016.	30.8	119
36	Optimal bulk-heterojunction morphology enabled by fibril network strategy for high-performance organic solar cells. Science China Chemistry, 2019, 62, 662-668.	8.2	118

#	Article	IF	CITATIONS
37	High-efficiency organic solar cells with low voltage loss induced by solvent additive strategy. Matter, 2021, 4, 2542-2552.	10.0	118
38	High fill factor organic solar cells with increased dielectric constant and molecular packing density. Joule, 2022, 6, 444-457.	24.0	117
39	Regioregular Bis-Pyridal[2,1,3]thiadiazole-Based Semiconducting Polymer for High-Performance Ambipolar Transistors. Journal of the American Chemical Society, 2017, 139, 17735-17738.	13.7	115
40	A General Approach for Labâ€ŧoâ€Manufacturing Translation on Flexible Organic Solar Cells. Advanced Materials, 2019, 31, e1903649.	21.0	114
41	Fibril Network Strategy Enables Highâ€Performance Semitransparent Organic Solar Cells. Advanced Functional Materials, 2020, 30, 2002181.	14.9	113
42	Unraveling the influence of non-fullerene acceptor molecular packing on photovoltaic performance of organic solar cells. Nature Communications, 2020, 11, 6005.	12.8	112
43	Highâ€Performance Semitransparent Ternary Organic Solar Cells. Advanced Functional Materials, 2018, 28, 1800627.	14.9	109
44	Ternary Organic Solar Cells with Small Nonradiative Recombination Loss. ACS Energy Letters, 2019, 4, 1196-1203.	17.4	101
45	Morphology Characterization of Bulk Heterojunction Solar Cells. Small Methods, 2018, 2, 1700229.	8.6	98
46	Advances in Nonâ€Fullerene Acceptor Based Ternary Organic Solar Cells. Solar Rrl, 2018, 2, 1700158.	5.8	98
47	High Performance Organic Solar Cells Based on a Twisted Bayâ€Substituted Tetraphenyl Functionalized Perylenediimide Electron Acceptor. Advanced Energy Materials, 2015, 5, 1500032.	19.5	93
48	Ferrocene as a highly volatile solid additive in non-fullerene organic solar cells with enhanced photovoltaic performance. Energy and Environmental Science, 2020, 13, 5117-5125.	30.8	93
49	Changing the π-bridge from thiophene to thieno[3,2- <i>b</i>]thiophene for the D–π–A type polymer enables high performance fullerene-free organic solar cells. Chemical Communications, 2019, 55, 6708-6710.	4.1	88
50	Ternary strategy enabling high-efficiency rigid and flexible organic solar cells with reduced non-radiative voltage loss. Energy and Environmental Science, 2022, 15, 1563-1572.	30.8	83
51	Efficient Ternary Organic Solar Cells Enabled by the Integration of Nonfullerene and Fullerene Acceptors with a Broad Composition Tolerance. Advanced Functional Materials, 2019, 29, 1807006.	14.9	81
52	Extension of indacenodithiophene backbone conjugation enables efficient asymmetric A–D–A type non-fullerene acceptors. Journal of Materials Chemistry A, 2018, 6, 18847-18852.	10.3	80
53	Polymerized Small Molecular Acceptor with Branched Side Chains for All Polymer Solar Cells with Efficiency over 16.7%. Advanced Materials, 2022, 34, e2110155.	21.0	79
54	Highâ€Performance Nonâ€Fullerene Organic Solar Cells Based on a Seleniumâ€Containing Polymer Donor and a Twisted Perylene Bisimide Acceptor. Advanced Science, 2016, 3, 1600117.	11.2	76

#	Article	IF	CITATIONS
55	A nonfullerene acceptor utilizing a novel asymmetric multifused-ring core unit for highly efficient organic solar cells. Journal of Materials Chemistry C, 2018, 6, 4873-4877.	5.5	73
56	Isomerization of Perylene Diimide Based Acceptors Enabling Highâ€Performance Nonfullerene Organic Solar Cells with Excellent Fill Factor. Advanced Science, 2019, 6, 1802065.	11.2	69
57	The Next 100 Years of Polymer Science. Macromolecular Chemistry and Physics, 2020, 221, 2000216.	2.2	69
58	Design, synthesis, and structural characterization of the first dithienocyclopentacarbazole-based n-type organic semiconductor and its application in non-fullerene polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 7451-7461.	10.3	68
59	Insertion of chlorine atoms onto ï€-bridges of conjugated polymer enables improved photovoltaic performance. Nano Energy, 2019, 58, 220-226.	16.0	67
60	Subtle Side-Chain Engineering of Random Terpolymers for High-Performance Organic Solar Cells. Chemistry of Materials, 2018, 30, 3294-3300.	6.7	64
61	Fluorobenzotriazole (FTAZ)â€Based Polymer Donor Enables Organic Solar Cells Exceeding 12% Efficiency. Advanced Functional Materials, 2019, 29, 1808828.	14.9	61
62	Ternary organic solar cells based on two compatible PDI-based acceptors with an enhanced power conversion efficiency. Journal of Materials Chemistry A, 2019, 7, 3552-3557.	10.3	58
63	Highly Transparent Organic Solar Cells with Allâ€Nearâ€Infrared Photoactive Materials. Small Methods, 2019, 3, 1900424.	8.6	55
64	Non-planar perylenediimide acceptors with different geometrical linker units for efficient non-fullerene organic solar cells. Journal of Materials Chemistry A, 2017, 5, 1713-1723.	10.3	54
65	Capillaryâ€Bridge Mediated Assembly of Conjugated Polymer Arrays toward Organic Photodetectors. Advanced Functional Materials, 2017, 27, 1701347.	14.9	53
66	Asymmetric selenophene-based non-fullerene acceptors for high-performance organic solar cells. Journal of Materials Chemistry A, 2019, 7, 1435-1441.	10.3	52
67	Influence of alkyl chains on photovoltaic properties of 3D rylene propeller electron acceptors. Journal of Materials Chemistry A, 2017, 5, 3475-3482.	10.3	51
68	Triphenylamine-cored star-shape compounds as non-fullerene acceptor for high-efficiency organic solar cells: Tuning the optoelectronic properties by S/Se-annulated perylene diimide. Organic Electronics, 2017, 41, 166-172.	2.6	51
69	Steric Engineering of Alkylthiolation Side Chains to Finely Tune Miscibility in Nonfullerene Polymer Solar Cells. Advanced Energy Materials, 2019, 9, 1802686.	19.5	51
70	Suppression of Recombination Energy Losses by Decreasing the Energetic Offsets in Perylene Diimide-Based Nonfullerene Organic Solar Cells. ACS Energy Letters, 2018, 3, 2729-2735.	17.4	50
71	Facile Fabrication of Highly Dispersed Pd@Ag Core–Shell Nanoparticles Embedded in <i>Spirulina platensis</i> by Electroless Deposition and Their Catalytic Properties. Advanced Functional Materials, 2018, 28, 1707231.	14.9	46
72	Highâ€Performance Solutionâ€Processed Smallâ€Molecule Solar Cells Based on a Dithienogermoleâ€Containing Molecular Donor. Advanced Energy Materials, 2015, 5, 1400987.	19.5	45

#	Article	IF	CITATIONS
73	Asymmetric fused-ring electron acceptor with two distinct terminal groups for efficient organic solar cells. Journal of Materials Chemistry A, 2019, 7, 8055-8060.	10.3	45
74	Heteroatom substitution-induced asymmetric A–D–A type non-fullerene acceptor for efficient organic solar cells. Journal of Energy Chemistry, 2020, 40, 144-150.	12.9	45
75	Thienobenzene-fused perylene bisimide as a non-fullerene acceptor for organic solar cells with a high open-circuit voltage and power conversion efficiency. Materials Chemistry Frontiers, 2017, 1, 749-756.	5.9	44
76	Dithieno[3,2-b:2′,3′-d]pyridin-5(4H)-one based D–A type copolymers with wide bandgaps of up to 2.05 eV achieve solar cell efficiencies of up to 7.33%. Chemical Science, 2016, 7, 6167-6175.	to 7.4	43
77	Asymmetrical vs Symmetrical Selenophene-Annulated Fused Perylenediimide Acceptors for Efficient Non-Fullerene Polymer Solar Cells. ACS Applied Energy Materials, 2018, 1, 6577-6585.	5.1	42
78	A three-dimensional thiophene-annulated perylene bisimide as a fullerene-free acceptor for a high performance polymer solar cell with the highest PCE of 8.28% and a <i>V</i> _{OC} over 1.0 V. Journal of Materials Chemistry C, 2018, 6, 1136-1142.	5.5	41
79	Nonâ€Fullerene Organic Solar Cells Based on Benzo[1,2â€b:4,5â€bâ€2]difuranâ€Conjugated Polymer with 14% Efficiency. Advanced Functional Materials, 2020, 30, 1906809.	14.9	41
80	Highâ€Performance Eightâ€Membered Indacenodithiopheneâ€Based Asymmetric Aâ€Dâ€A Type Nonâ€Fullerene Acceptors. Solar Rrl, 2019, 3, 1800246.	5.8	40
81	Benzo[1,2â€b:4,5â€bâ€2]difuran Based Polymer Donor for Highâ€Efficiency (>16%) and Stable Organic Solar Cells. Advanced Energy Materials, 2022, 12, .	19.5	37
82	Polymer Donors for Highâ€₽erformance Nonâ€Fullerene Organic Solar Cells. Angewandte Chemie, 2019, 131, 4488-4499.	2.0	36
83	An Optimized Fibril Network Morphology Enables Highâ€Efficiency and Ambientâ€Stable Polymer Solar Cells. Advanced Science, 2020, 7, 2001986.	11.2	34
84	Organic Solar Cells Based on WO2.72 Nanowire Anode Buffer Layer with Enhanced Power Conversion Efficiency and Ambient Stability. ACS Applied Materials & Interfaces, 2017, 9, 12629-12636.	8.0	33
85	Asymmetric A–D–π–A-type nonfullerene small molecule acceptors for efficient organic solar cells. Journal of Materials Chemistry A, 2019, 7, 19348-19354.	10.3	33
86	High-efficiency organic solar cells enabled by an alcohol-washable solid additive. Science China Chemistry, 2021, 64, 2161-2168.	8.2	32
87	Wide bandgap copolymers with vertical benzodithiophene dicarboxylate for high-performance polymer solar cells with an efficiency up to 7.49%. Journal of Materials Chemistry A, 2016, 4, 18792-18803.	10.3	30
88	High-performance conjugated terpolymer-based organic bulk heterojunction solar cells. Journal of Materials Chemistry A, 2016, 4, 13930-13937.	10.3	29
89	A tetrameric perylene diimide non-fullerene acceptor <i>via</i> unprecedented direct (hetero)arylation cross-coupling reactions. Chemical Communications, 2018, 54, 11443-11446.	4.1	28
90	Simultaneously improving the photovoltaic parameters of organic solar cells <i>via</i> isomerization of benzo[<i>b</i>]benzo[4,5]thieno[2,3- <i>d</i>]thiophene-based octacyclic non-fullerene acceptors. Journal of Materials Chemistry A, 2020, 8, 9684-9692.	10.3	28

#	Article	IF	CITATIONS
91	Measurement of the Charge Carrier Mobility Distribution in Bulk Heterojunction Solar Cells. Advanced Materials, 2015, 27, 4989-4996.	21.0	27
92	Isomeric Nâ€Annulated Perylene Diimide Dimers for Organic Solar Cells. Chemistry - an Asian Journal, 2018, 13, 918-923.	3.3	27
93	Influence of aromatic heterocycle of conjugated side chains on photovoltaic performance of benzodithiophene-based wide-bandgap polymers. Polymer Chemistry, 2016, 7, 4036-4045.	3.9	26
94	<i>In Situ</i> Characterization of the Triphase Contact Line in a Brush-Coating Process: Toward the Enhanced Efficiency of Polymer Solar Cells. ACS Applied Materials & amp; Interfaces, 2018, 10, 39448-39454.	8.0	25
95	Pyreneâ€Fused Perylene Diimides: New Building Blocks to Construct Nonâ€Fullerene Acceptors With Extremely High Open ircuit Voltages up to 1.26 V. Solar Rrl, 2017, 1, 1700123.	5.8	24
96	Rigid Nonfullerene Acceptors Based on Triptycene–Perylene Dye for Organic Solar Cells. Chemistry - an Asian Journal, 2017, 12, 1286-1290.	3.3	22
97	High-performance wide-bandgap copolymers based on indacenodithiophene and indacenodithieno[3,2-b]thiophene units. Journal of Materials Chemistry C, 2017, 5, 7777-7783.	5.5	22
98	Synergistic effect of the selenophene-containing central core and the regioisomeric monochlorinated terminals on the molecular packing, crystallinity, film morphology, and photovoltaic performance of selenophene-based nonfullerene acceptors. Journal of Materials Chemistry C, 2021, 9, 1923-1935.	5.5	21
99	Novel Nonconjugated Polymer as Cathode Buffer Layer for Efficient Organic Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 24082-24089.	8.0	20
100	The first application of isoindigo-based polymers in non-fullerene organic solar cells. Science China Chemistry, 2020, 63, 1262-1271.	8.2	20
101	Non-fullerene acceptor pre-aggregates enable high efficiency pseudo-bulk heterojunction organic solar cells. Science China Chemistry, 2022, 65, 373-381.	8.2	20
102	Bis(perylene diimide) with DACH bridge as non-fullerene electron acceptor for organic solar cells. RSC Advances, 2016, 6, 14027-14033.	3.6	19
103	Effect of the Energy Offset on the Charge Dynamics in Nonfullerene Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 43984-43991.	8.0	19
104	Novel π-Conjugated Polymer Based on an Extended Thienoquinoid. Chemistry of Materials, 2018, 30, 319-323.	6.7	17
105	Controlling Molecular Weight to Achieve Highâ€Efficient Polymer Solar Cells With Unprecedented Fill Factor of 79% Based on Nonâ€Fullerene Small Molecule Acceptor. Solar Rrl, 2018, 2, 1800129.	5.8	16
106	Enhanced open-circuit voltage in methoxyl substituted benzodithiophene-based polymer solar cells. Science China Chemistry, 2017, 60, 243-250.	8.2	15
107	Effects of monohalogenated terminal units of non-fullerene acceptors on molecular aggregation and photovoltaic performance. Solar Energy, 2020, 208, 866-872.	6.1	15
108	Asymmetrically Alkyl‧ubstituted Wideâ€Bandgap Nonfullerene Acceptor for Organic Solar Cells. Solar Rrl, 2020, 4, 2000061.	5.8	15

#	Article	IF	CITATIONS
109	Rational design of two-dimensional PDI-based small molecular acceptor from extended indacenodithiazole core for organic solar cells. Dyes and Pigments, 2017, 147, 31-39.	3.7	14
110	Rational design of perylenediimide-based polymer acceptor for efficient all-polymer solar cells. Organic Electronics, 2017, 50, 376-383.	2.6	14
111	A twisted monomeric perylenediimide electron acceptor for efficient organic solar cells. Science China Materials, 2016, 59, 427-434.	6.3	13
112	Exploring a Fused 2-(Thiophen-2-yl)thieno[3,2- <i>b</i>]thiophene (T-TT) Building Block to Construct n-Type Polymer for High-Performance All-Polymer Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 42412-42419.	8.0	13
113	Efficient Fusedâ€Ring Extension of A–D–Aâ€Type Nonâ€Fullerene Acceptors by a Symmetric Replicating Core Unit Strategy. Chemistry - A European Journal, 2020, 26, 12411-12417.	3.3	13
114	Revisiting Conjugated Polymers with Long-Branched Alkyl Chains: High Molecular Weight, Excellent Mechanical Properties, and Low Voltage Losses. Macromolecules, 2022, 55, 5964-5974.	4.8	13
115	Topâ€Pinning Controlled Dewetting for Fabrication of Largeâ€6caled Polymer Microwires and Applications in OFETs. Advanced Electronic Materials, 2016, 2, 1600111.	5.1	12
116	Influence of 2,2-bithiophene and thieno[3,2-b] thiophene units on the photovoltaic performance of benzodithiophene-based wide-bandgap polymers. Journal of Materials Chemistry C, 2017, 5, 4471-4479.	5.5	12
117	A novel bifunctional A–D–A type small molecule for efficient organic solar cells. Materials Chemistry Frontiers, 2018, 2, 1626-1630.	5.9	12
118	Enhanced efficiency of planar-heterojunction perovskite solar cells through a thermal gradient annealing process. RSC Advances, 2015, 5, 58041-58045.	3.6	11
119	Effects of a heteroatomic benzothienothiophenedione acceptor on the properties of a series of wide-bandgap photovoltaic polymers. Journal of Materials Chemistry C, 2016, 4, 9052-9059.	5.5	10
120	Highâ€Efficiency Organic Solar Cells with Wide Toleration of Active Layer Thickness. Solar Rrl, 2020, 4, 2000476.	5.8	10
121	Recent Progress of Benzodifuranâ€Based Polymer Donors for Highâ€Performance Organic Photovoltaics. Small Science, 2022, 2, .	9.9	10
122	Perylene Bisimides as efficient electron transport layers in planar heterojunction perovskite solar cells. Science China Chemistry, 2016, 59, 1658-1662.	8.2	9
123	Synergistic Effects of Fluorination and Alkylthiolation on the Photovoltaic Performance of the Poly(benzodithiophene-benzothiadiazole) Copolymers. ACS Applied Energy Materials, 2018, 1, 4686-4694.	5.1	9
124	Organic solar cells based on chlorine functionalized benzo[1,2-b:4,5-bâ€2]difuran-benzo[1,2-c:4,5-câ€2]dithiophene-4,8-dione copolymer with efficiency exceeding 13%. Science China Chemistry, 2020, 63, 483-489.	8.2	8
125	Benzothiadiazole Versus Thiophene: Influence of the Auxiliary Acceptor on the Photovoltaic Properties of Donor–Acceptorâ€Based Copolymers. Macromolecular Rapid Communications, 2018, 39, 1700547.	3.9	7
126	Fineâ€Tuning Aggregation of Nonfullerene Acceptor Enables Highâ€Efficiency Organic Solar Cells. Small Structures, 2021, 2, 2100055.	12.0	7

#	Article	IF	CITATIONS
127	Flexible Solar Cells: A General Approach for Labâ€toâ€Manufacturing Translation on Flexible Organic Solar Cells (Adv. Mater. 41/2019). Advanced Materials, 2019, 31, 1970294.	21.0	5
128	Benzyl side-chain engineering of non-fullerene acceptors for efficient organic solar cells. Dyes and Pigments, 2021, 195, 109706.	3.7	5
129	Unraveling the Characteristic Shape for Magnetic Field Effects in Polymer–Fullerene Solar Cells. ACS Omega, 2017, 2, 7777-7783.	3.5	4
130	Fuller-Rylenes: Paving the Way for Promising Acceptors. ACS Applied Materials & Interfaces, 2020, 12, 29513-29519.	8.0	4
131	Effect of Extended π-Conjugation of Central Cores on Photovoltaic Properties of Asymmetric Wide-Bandgap Nonfullerene Acceptors. Organic Materials, 2020, 02, 173-181.	2.0	2