Chris Gaiteri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1359780/publications.pdf

Version: 2024-02-01

218677 233421 4,912 45 26 45 h-index citations g-index papers 53 53 53 8933 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Large-scale deep multi-layer analysis of Alzheimer's disease brain reveals strong proteomic disease-related changes not observed at the RNA level. Nature Neuroscience, 2022, 25, 213-225.	14.8	202
2	Inferring protein expression changes from mRNA in Alzheimer's dementia using deep neural networks. Nature Communications, 2022, 13, 655.	12.8	29
3	Cortical proteins may provide motor resilience in older adults. Scientific Reports, 2021, 11, 11311.	3.3	14
4	Stem cell-derived neurons reflect features of protein networks, neuropathology, and cognitive outcome of their aged human donors. Neuron, 2021, 109, 3402-3420.e9.	8.1	75
5	A cortical immune network map identifies distinct microglial transcriptional programs associated with \hat{l}^2 -amyloid and Tau pathologies. Translational Psychiatry, 2021, 11, 50.	4.8	19
6	Largeâ€scale deep multiâ€layer analysis of Alzheimer's disease brain reveals strong proteomic diseaseâ€related changes not observed at the RNA level. Alzheimer's and Dementia, 2021, 17, e055041.	0.8	1
7	Quantitative Systems Pharmacology for Neuroscience Drug Discovery and Development: Current Status, Opportunities, and Challenges. CPT: Pharmacometrics and Systems Pharmacology, 2020, 9, 5-20.	2.5	29
8	Large eQTL meta-analysis reveals differing patterns between cerebral cortical and cerebellar brain regions. Scientific Data, 2020, 7, 340.	5.3	75
9	Meta-Analysis of the Alzheimer's Disease Human Brain Transcriptome and Functional Dissection in Mouse Models. Cell Reports, 2020, 32, 107908.	6.4	199
10	Deconvolving the contributions of cell-type heterogeneity on cortical gene expression. PLoS Computational Biology, 2020, 16, e1008120.	3.2	66
11	Identifying the molecular systems that influence cognitive resilience to Alzheimer's disease in genetically diverse mice. Learning and Memory, 2020, 27, 355-371.	1.3	15
12	Deep learning decodes the principles of differential gene expression. Nature Machine Intelligence, 2020, 2, 376-386.	16.0	22
13	Gene expression and DNA methylation are extensively coordinated with MRI-based brain microstructural characteristics. Brain Imaging and Behavior, 2019, 13, 963-972.	2.1	24
14	Microstructural changes in the brain mediate the association of AK4, IGFBP5, HSPB2, and ITPK1 with cognitive decline. Neurobiology of Aging, 2019, 84, 17-25.	3.1	11
15	Using Transcriptomic Hidden Variables to Infer Context-Specific Genotype Effects in the Brain. American Journal of Human Genetics, 2019, 105, 562-572.	6.2	7
16	Genetic risk for Alzheimer's dementia predicts motor deficits through multi-omic systems in older adults. Translational Psychiatry, 2019, 9, 241.	4.8	11
17	Cognition may link cortical IGFBP5 levels with motor function in older adults. PLoS ONE, 2019, 14, e0220968.	2.5	8
18	Association of Cortical \hat{l}^2 -Amyloid Protein in the Absence of Insoluble Deposits With Alzheimer Disease. JAMA Neurology, 2019, 76, 818.	9.0	25

#	Article	IF	CITATIONS
19	Physical activity, common brain pathologies, and cognition in community-dwelling older adults. Neurology, 2019, 92, e811-e822.	1.1	61
20	<i>APOE</i> genotypes as a risk factor for ageâ€dependent accumulation of cerebrovascular disease in older adults. Alzheimer's and Dementia, 2019, 15, 258-266.	0.8	17
21	Association Between Quantitative Gait and Balance Measures and Total Daily Physical Activity in Community-Dwelling Older Adults. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 636-642.	3.6	33
22	A multi-omic atlas of the human frontal cortex for aging and Alzheimer's disease research. Scientific Data, 2018, 5, 180142.	5.3	357
23	The Molecular and Neuropathological Consequences of Genetic Risk for Alzheimer's Dementia. Frontiers in Neuroscience, 2018, 12, 699.	2.8	47
24	Seasonal plasticity of cognition and related biological measures in adults with and without Alzheimer disease: Analysis of multiple cohorts. PLoS Medicine, 2018, 15, e1002647.	8.4	42
25	A molecular network of the aging human brain provides insights into the pathology and cognitive decline of Alzheimer's disease. Nature Neuroscience, 2018, 21, 811-819.	14.8	422
26	Multi-omic Directed Networks Describe Features of Gene Regulation in Aged Brains and Expand the Set of Genes Driving Cognitive Decline. Frontiers in Genetics, 2018, 9, 294.	2.3	30
27	Polygenic analysis of inflammatory disease variants and effects on microglia in the aging brain. Molecular Neurodegeneration, 2018, 13, 38.	10.8	44
28	<i>APOE</i> ε2ε4 genotype, incident AD and MCI, cognitive decline, and AD pathology in older adults. Neurology, 2018, 90, e2127-e2134.	1.1	42
29	Targeted brain proteomics uncover multiple pathways to Alzheimer's dementia. Annals of Neurology, 2018, 84, 78-88.	5.3	102
30	<i>TOMM40</i> ′523 variant and cognitive decline in older persons with <i>APOE</i> Îμ3/3 genotype. Neurology, 2017, 88, 661-668.	1.1	45
31	Association Between Brain Gene Expression, DNA Methylation, and Alteration of Ex Vivo Magnetic Resonance Imaging Transverse Relaxation in Late-Life Cognitive Decline. JAMA Neurology, 2017, 74, 1473.	9.0	21
32	An xQTL map integrates the genetic architecture of the human brain's transcriptome and epigenome. Nature Neuroscience, 2017, 20, 1418-1426.	14.8	377
33	APOE ε4-TOMM40 â€~523 haplotypes and the risk of Alzheimer's disease in older Caucasian and African Americans. PLoS ONE, 2017, 12, e0180356.	2.5	39
34	Supporting novel biomedical research via multilayer collaboration networks. Applied Network Science, 2016, 1, 11.	1.5	3
35	Genetic variants in Alzheimer disease — molecular and brain network approaches. Nature Reviews Neurology, 2016, 12, 413-427.	10.1	97
36	Identifying robust communities and multi-community nodes by combining top-down and bottom-up approaches to clustering. Scientific Reports, 2015, 5, 16361.	3.3	74

3

#	ARTICLE	IF	CITATION
37	Bayesian Network Reconstruction Using Systems Genetics Data: Comparison of MCMC Methods. Genetics, 2015, 199, 973-989.	2.9	27
38	Beyond modules and hubs: the potential of gene coexpression networks for investigating molecular mechanisms of complex brain disorders. Genes, Brain and Behavior, 2014, 13, 13-24.	2.2	229
39	Variants in triggering receptor expressed on myeloid cells 2 are associated with both behavioral variant frontotemporal lobar degeneration and Alzheimer's disease. Neurobiology of Aging, 2013, 34, 2077.e11-2077.e18.	3.1	124
40	Integrated Systems Approach Identifies Genetic Nodes and Networks in Late-Onset Alzheimer's Disease. Cell, 2013, 153, 707-720.	28.9	1,505
41	The Interaction of Intrinsic Dynamics and Network Topology in Determining Network Burst Synchrony. Frontiers in Computational Neuroscience, 2011, 5, 10.	2.1	35
42	Differentially Expressed Genes in Major Depression Reside on the Periphery of Resilient Gene Coexpression Networks. Frontiers in Neuroscience, 2011, 5, 95.	2.8	33
43	Network analysis of positional candidate genes of schizophrenia highlights… more than… myelin-related pathways. Molecular Psychiatry, 2010, 15, 786-788.	7.9	7
44	Altered Gene Synchrony Suggests a Combined Hormone-Mediated Dysregulated State in Major Depression. PLoS ONE, 2010, 5, e9970.	2.5	38
45	A Molecular Signature of Depression in the Amygdala. American Journal of Psychiatry, 2009, 166, 1011-1024.	7.2	177