Dan J Lapworth

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1359743/dan-j-lapworth-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

77	3,817	31	61
papers	citations	h-index	g-index
81 ext. papers	4,554 ext. citations	7.6 avg, IF	5.57 L-index

#	Paper	IF	Citations
77	Emerging organic contaminants in karst groundwater: A global level assessment. <i>Journal of Hydrology</i> , 2022 , 604, 127242	6	8
76	Conversion of Forest to Agriculture Increases Colored Dissolved Organic Matter in a Subtropical Catchment and Adjacent Coastal Environment. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2021 , 126, e2021JG006295	3.7	0
75	Quantifying the dynamics of sub-daily to seasonal hydrological interactions of Ganges river with groundwater in a densely populated city: Implications to vulnerability of drinking water sources. <i>Journal of Environmental Management</i> , 2021 , 288, 112384	7.9	3
74	Tryptophan-like fluorescence as a high-level screening tool for detecting microbial contamination in drinking water. <i>Science of the Total Environment</i> , 2021 , 750, 141284	10.2	7
73	Emerging organic contaminants in groundwater under a rapidly developing city (Patna) in northern India dominated by high concentrations of lifestyle chemicals. <i>Environmental Pollution</i> , 2021 , 268, 1157	63 ^{.3}	12
72	Emerging organic compounds in European groundwater. <i>Environmental Pollution</i> , 2021 , 269, 115945	9.3	17
71	Contrasting Estuarine Processing of Dissolved Organic Matter Derived From Natural and Human-Impacted Landscapes. <i>Global Biogeochemical Cycles</i> , 2021 , 35, e2021GB007023	5.9	2
70	Elevated uranium in drinking water sources in basement aquifers of southern India. <i>Applied Geochemistry</i> , 2021 , 133, 105092	3.5	3
69	Success Factors for Water Safety Plan Implementation in Small Drinking Water Supplies in Low- and Middle-Income Countries. <i>Resources</i> , 2020 , 9, 126	3.7	2
68	In-situ fluorescence spectroscopy indicates total bacterial abundance and dissolved organic carbon. <i>Science of the Total Environment</i> , 2020 , 738, 139419	10.2	11
67	Drinking water quality from rural handpump-boreholes in Africa. <i>Environmental Research Letters</i> , 2020 , 15, 064020	6.2	15
66	Changes in global groundwater organic carbon driven by climate change and urbanization. <i>Nature Communications</i> , 2020 , 11, 1279	17.4	42
65	Large-scale survey of seasonal drinking water quality in Malawi using in situ tryptophan-like fluorescence and conventional water quality indicators. <i>Science of the Total Environment</i> , 2020 , 744, 140	0 194	10
64	Groundwater connectivity of a sheared gneiss aquifer in the Cauvery River basin, India. <i>Hydrogeology Journal</i> , 2020 , 28, 1371-1388	3.1	11
63	Tryptophan-like and humic-like fluorophores are extracellular in groundwater: implications as real-time faecal indicators. <i>Scientific Reports</i> , 2020 , 10, 15379	4.9	9
62	Groundwater and resilience to drought in the Ethiopian highlands. <i>Environmental Research Letters</i> , 2019 , 14, 095003	6.2	24
61	Dissolved organic matter tracers reveal contrasting characteristics across high arsenic aquifers in Cambodia: A fluorescence spectroscopy study. <i>Geoscience Frontiers</i> , 2019 , 10, 1653-1667	6	10

(2017-2019)

60	A baseline assessment of emerging organic contaminants in New Zealand groundwater. <i>Science of the Total Environment</i> , 2019 , 686, 425-439	10.2	25
59	Prioritization Approaches for Substances of Emerging Concern in Groundwater: A Critical Review. <i>Environmental Science & Environmental Science & Envir</i>	10.3	31
58	Tracking changes in the occurrence and source of pharmaceuticals within the River Thames, UK; from source to sea. <i>Environmental Pollution</i> , 2019 , 249, 257-266	9.3	44
57	Tryptophan-like fluorescence as a measure of microbial contamination risk in groundwater. <i>Science of the Total Environment</i> , 2019 , 646, 782-791	10.2	33
56	Unified concepts for understanding and modelling turnover of dissolved organic matter from freshwaters to the ocean: the UniDOM model. <i>Biogeochemistry</i> , 2019 , 146, 105-123	3.8	18
55	Developing a groundwater watch list for substances of emerging concern: a European perspective. <i>Environmental Research Letters</i> , 2019 , 14, 035004	6.2	25
54	Terrestrial dissolved organic matter distribution in the North Sea. <i>Science of the Total Environment</i> , 2018 , 630, 630-647	10.2	40
53	Online fluorescence spectroscopy for the real-time evaluation of the microbial quality of drinking water. <i>Water Research</i> , 2018 , 137, 301-309	12.5	51
52	Real-time detection of faecally contaminated drinking water with tryptophan-like fluorescence: defining threshold values. <i>Science of the Total Environment</i> , 2018 , 622-623, 1250-1257	10.2	34
51	Evaluating the stable isotopic composition of phosphate oxygen as a tracer of phosphorus from waste water treatment works. <i>Applied Geochemistry</i> , 2018 , 95, 139-146	3.5	9
50	Deep urban groundwater vulnerability in India revealed through the use of emerging organic contaminants and residence time tracers. <i>Environmental Pollution</i> , 2018 , 240, 938-949	9.3	53
49	Security of Deep Groundwater in the Coastal Bengal Basin Revealed by Tracers. <i>Geophysical Research Letters</i> , 2018 , 45, 8241-8252	4.9	16
48	Phosphorus fluxes to the environment from mains water leakage: Seasonality and future scenarios. <i>Science of the Total Environment</i> , 2018 , 636, 1321-1332	10.2	6
47	Mains water leakage: Implications for phosphorus source apportionment and policy responses in catchments. <i>Science of the Total Environment</i> , 2017 , 579, 702-708	10.2	17
46	Hydrogeological typologies of the Indo-Gangetic basin alluvial aquifer, South Asia. <i>Hydrogeology Journal</i> , 2017 , 25, 1377-1406	3.1	78
45	Role of Humic Acid in the Stability of Ag Nanoparticles in Suboxic Conditions. <i>Environmental Science & Environmental Science</i> & Environmental Science	10.3	15
44	Groundwater quality in the alluvial aquifer system of northwest India: New evidence of the extent of anthropogenic and geogenic contamination. <i>Science of the Total Environment</i> , 2017 , 599-600, 1433-14	144.2	93
43	Urban groundwater quality in sub-Saharan Africa: current status and implications for water security and public health. <i>Hydrogeology Journal</i> , 2017 , 25, 1093-1116	3.1	119

42	Terrestrial water load and groundwater fluctuation in the Bengal Basin. Scientific Reports, 2017, 7, 3872	2 4.9	20
41	Groundwater quality and depletion in the Indo-Gangetic Basin mapped from in situ observations. Nature Geoscience, 2016 , 9, 762-766	18.3	245
40	Temporal variability of micro-organic contaminants in lowland chalk catchments: New insights into contaminant sources and hydrological processes. <i>Science of the Total Environment</i> , 2016 , 568, 566-577	10.2	16
39	Macronutrient status of UK groundwater: Nitrogen, phosphorus and organic carbon. <i>Science of the Total Environment</i> , 2016 , 572, 1543-1560	10.2	23
38	Hydrochemical profiles in urban groundwater systems: New insights into contaminant sources and pathways in the subsurface from legacy and emerging contaminants. <i>Science of the Total Environment</i> , 2016 , 562, 962-973	10.2	19
37	Estimating the leakage contribution of phosphate dosed drinking water to environmental phosphorus pollution at the national-scale. <i>Science of the Total Environment</i> , 2016 , 572, 1534-1542	10.2	29
36	A multi-stable isotope framework to understand eutrophication in aquatic ecosystems. <i>Water Research</i> , 2016 , 88, 623-633	12.5	59
35	Are sanitation interventions a threat to drinking water supplies in rural India? An application of tryptophan-like fluorescence. <i>Water Research</i> , 2016 , 88, 923-932	12.5	48
34	Impacts of extreme flooding on riverbank filtration water quality. <i>Science of the Total Environment</i> , 2016 , 554-555, 89-101	10.2	30
33	Using chemical, microbial and fluorescence techniques to understand contaminant sources and pathways to wetlands in a conservation site. <i>Science of the Total Environment</i> , 2015 , 511, 703-10	10.2	19
32	In-situ tryptophan-like fluorescence: A real-time indicator of faecal contamination in drinking water supplies. <i>Water Research</i> , 2015 , 81, 38-46	12.5	63
31	Isotopic Fingerprint for Phosphorus in Drinking Water Supplies. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	25
30	Persistent and emerging micro-organic contaminants in Chalk groundwater of England and France. <i>Environmental Pollution</i> , 2015 , 203, 214-225	9.3	58
29	In situ tryptophan-like fluorometers: assessing turbidity and temperature effects for freshwater applications. <i>Environmental Sciences: Processes and Impacts</i> , 2015 , 17, 740-52	4.3	62
28	Emerging contaminants in urban groundwater sources in Africa. Water Research, 2015, 72, 51-63	12.5	191
27	Groundwater recharge and age-depth profiles of intensively exploited groundwater resources in northwest India. <i>Geophysical Research Letters</i> , 2015 , 42, 7554-7562	4.9	61
26	Tracing enteric pathogen contamination in sub-Saharan African groundwater. <i>Science of the Total Environment</i> , 2015 , 538, 888-95	10.2	36
25	Nitrogen sources, transport and processing in peri-urban floodplains. <i>Science of the Total Environment</i> , 2014 , 494-495, 28-38	10.2	46

(2008-2014)

Molybdenum distributions and variability in drinking water from England and Wales. <i>Environmental Monitoring and Assessment</i> , 2014 , 186, 6403-16	3.1	20
Transformation Products of Emerging Organic Compounds as Future Groundwater and Drinking Water Contaminants 2014 , 65-86		4
Groundwater, flooding and hydrological functioning in the Findhorn floodplain, Scotland 2014 , 45, 755	-773	16
Fingerprinting groundwater pollution in catchments with contrasting contaminant sources using microorganic compounds. <i>Science of the Total Environment</i> , 2014 , 468-469, 564-77	10.2	49
Residence times of shallow groundwater in West Africa: implications for hydrogeology and resilience to future changes in climate. <i>Hydrogeology Journal</i> , 2013 , 21, 673-686	3.1	65
A combined geochemical and hydrological approach for understanding macronutrient sources. <i>Journal of Hydrology</i> , 2013 , 500, 226-242	6	11
Characterization of suboxic groundwater colloids using a multi-method approach. <i>Environmental Science & Environmental Science</i>	10.3	25
Using boreholes as windows into groundwater ecosystems. <i>PLoS ONE</i> , 2013 , 8, e70264	3.7	37
Emerging organic contaminants in groundwater: A review of sources, fate and occurrence. <i>Environmental Pollution</i> , 2012 , 163, 287-303	9.3	1114
Geochemical mapping using stream sediments in west-central Nigeria: Implications for environmental studies and mineral exploration in West Africa. <i>Applied Geochemistry</i> , 2012 , 27, 1035-10	5 3 ·5	33
Investigating high zircon concentrations in the fine fraction of stream sediments draining the Pan-African Dahomeyan Terrane in Nigeria. <i>Applied Geochemistry</i> , 2012 , 27, 1525-1539	3.5	8
Understanding Phosphorus Mobility and Bioavailability in the Hyporheic Zone of a Chalk Stream. Water, Air, and Soil Pollution, 2011 , 218, 213-226	2.6	19
Geochemical signatures of stream sediments within the main geological domains and terranes of North and Central Madagascar. <i>Transactions of the Institution of Mining and Metallurgy Section B-Applied Earth Science</i> , 2011 , 120, 97-110		1
Interaction between groundwater, the hyporheic zone and a Chalk stream: a case study from the River Lambourn, UK. <i>Hydrogeology Journal</i> , 2010 , 18, 1125-1141	3.1	36
Quantification of natural DOM from UV absorption at two wavelengths. <i>Environmental Chemistry</i> , 2009 , 6, 472	3.2	57
An R script for visualising and analysing fluorescence excitation matrices (EEMs). <i>Computers and Geosciences</i> , 2009 , 35, 2160-2163	4.5	25
Understanding groundwater, surface water, and hyporheic zone biogeochemical processes in a Chalk catchment using fluorescence properties of dissolved and colloidal organic matter. <i>Journal of Geophysical Research</i> , 2009 , 114,		40
Groundwater nitrogen composition and transformation within a moorland catchment, mid-Wales. <i>Science of the Total Environment</i> , 2008 , 390, 241-54	10.2	17
	Monitoring and Assessment, 2014, 186, 6403-16 Transformation Products of Emerging Organic Compounds as Future Groundwater and Drinking Water Contaminants 2014, 65-86 Groundwater, flooding and hydrological functioning in the Findhorn floodplain, Scotland 2014, 45, 755 Fingerprinting groundwater pollution in catchments with contrasting contaminant sources using microorganic compounds. Science of the Total Environment, 2014, 468-469, 564-77 Residence times of shallow groundwater in West Africa: implications for hydrogeology and resilience to future changes in climate. Hydrogeology Journal, 2013, 21, 673-686 A combined geochemical and hydrological approach for understanding macronutrient sources. Journal of Hydrology, 2013, 500, 226-242 Characterization of suboxic groundwater colloids using a multi-method approach. Environmental Science & Ramp; Technology, 2013, 47, 2554-61 Using boreholes as windows into groundwater: A review of sources, fate and occurrence. Environmental Pollution, 2012, 163, 287-303 Geochemical mapping using stream sediments in west-central Nigeria: Implications for environmental studies and mineral exploration in West Africa. Applied Geochemistry, 2012, 27, 1035-10 Investigating high zircon concentrations in the fine fraction of stream sediments draining the Pan-African Dahomeyan Terrane in Nigeria. Applied Geochemistry, 2012, 27, 1525-1539 Understanding Phosphorus Mobility and Bioavaliability in the Hyporheic Zone of a Chalk Stream. Water, Air, and Soil Pollution, 2011, 218, 213-226 Goothemical signatures of stream sediments within the main geological domains and terranes of North and Central Managascar. Transactions of the Institution of Mining and Metallurgy Section B-Applied Earth Science, 2011, 120, 97-110 Interaction between groundwater, the hyporheic zone and a Chalk stream: a case study from the River Lambourn, UK. Hydrogeology Journal, 2010, 18, 1125-1141 Quantification of natural DOM from UV absorption at two wavelengths. Environmental Chemistry, 2009, 6, 472 An R script	Monitoring and Assessment, 2014, 186, 6403-16 Transformation Products of Emerging Organic Compounds as Future Groundwater and Drinking Water Contaminants 2014, 65-86 Groundwater, flooding and hydrological functioning in the Findhorn floodplain, Scotland 2014, 45, 755-773 Fingerprinting groundwater pollution in catchments with contrasting contaminant sources using microorganic compounds. Science of the Total Environment, 2014, 468-469, 564-77 Residence times of shallow groundwater in West Africa: implications for hydrogeology and resilience to future changes in climate. Hydrogeology Journal, 2013, 21, 673-686 A combined geochemical and hydrological approach for understanding macronutrient sources. Journal of Hydrology, 2013, 500, 226-242 Characterization of suboxic groundwater colloids using a multi-method approach. Environmental Science & Bamp; Technology, 2013, 47, 2554-61 Using boreholes as windows into groundwater ecosystems. PLOS ONE, 2013, 8, e70264 37 Emerging organic contaminants in groundwater: A review of sources, fate and occurrence. Environmental Pollution, 2012, 163, 287-303 Geochemical mapping using stream sediments in west-central Nigeria: Implications for environmental studies and mineral exploration in West Africa. Applied Geochemistry, 2012, 27, 1035-1052-5 Investigating high zircon concentrations in the fine fraction of stream sediments draining the Pan-African Dahomeyan Terrane in Nigeria. Applied Geochemistry, 2012, 27, 1525-1539 Understanding Phosphorus Mobility and Bioavailability in the Hyporheic Zone of a Chalk Stream. Water, Air, and Soil Pollution, 2011, 218, 213-226 Geochemical signatures of stream sediments within the main geological domains and terranes of North and Central Madagascar. Transactions of the Institution of Mining and Metallurgy Section B-Applied Earth Science, 2011, 120, 97-110 Interaction between groundwater, the hyporheic zone and a Chalk stream: a case study from the River Lambourn, UK. Hydrogeology Journal, 2010, 18, 1125-1141 Quantification of na

1	Landscape controls on riverine export of dissolved organic carbon from Great Britain. Biogeochemistry,1	3.8	8
2	Pesticide pollution of the Triassic Sandstone aquifer of South Yorkshire. <i>Quarterly Journal of Engineering Geology and Hydrogeology</i> , 2005 , 38, 53-63	1.4	12
3	Using chlorofluorocarbons (CFCs) and sulphur hexafluoride (SF6) to characterise groundwater movement and residence time in a lowland Chalk catchment. <i>Journal of Hydrology</i> , 2006 , 330, 44-52	6	109
4	Source and persistence of pesticides in a semi-confined chalk aquifer of southeast England. <i>Environmental Pollution</i> , 2006 , 144, 1031-44	9.3	81
5	The significance of colloids in the transport of pesticides through Chalk. <i>Science of the Total Environment</i> , 2007 , 385, 262-71	10.2	23
6	Tracing groundwater flow and sources of organic carbon in sandstone aquifers using fluorescence properties of dissolved organic matter (DOM). <i>Applied Geochemistry</i> , 2008 , 23, 3384-3390	3.5	59