
Miguel Ängel Älvarez-Merino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1359380/publications.pdf

Version: 2024-02-01

MIGUEL ÃNGEL

#	Article	IF	CITATIONS
1	Electrocatalytic activity of calcined manganese ferrite solid nanospheres in the oxygen reduction reaction. Environmental Research, 2022, 204, 112126.	7.5	2
2	Physicochemical characteristics of calcined MnFe2O4 solid nanospheres and their catalytic activity to oxidize para-nitrophenol with peroxymonosulfate and n-C7 asphaltenes with air. Journal of Environmental Management, 2021, 281, 111871.	7.8	20
3	Copper ferrite nanospheres composites mixed with carbon black to boost the oxygen reduction reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 613, 126060.	4.7	9
4	Manganese ferrite solid nanospheres solvothermally synthesized as catalyst for peroxymonosulfate activation to degrade and mineralize para-nitrophenol: Study of operational variables and catalyst reutilization. Journal of Environmental Chemical Engineering, 2021, 9, 105192.	6.7	13
5	Effect of operational parameters on photocatalytic degradation of ethylparaben using rGO/TiO2 composite under UV radiation. Environmental Research, 2021, 200, 111750.	7.5	12
6	Removal of parabens from water by UV-driven advanced oxidation processes. Chemical Engineering Journal, 2020, 379, 122334.	12.7	59
7	Characteristics and Behavior of Different Catalysts Used for Water Decontamination in Photooxidation and Ozonation Processes. Catalysts, 2020, 10, 1485.	3.5	7
8	Hydrothermal Synthesis of rGO-TiO2 Composites as High-Performance UV Photocatalysts for Ethylparaben Degradation. Catalysts, 2020, 10, 520.	3.5	71
9	Solar Degradation of Sulfamethazine Using rGO/Bi Composite Photocatalysts. Catalysts, 2020, 10, 573.	3.5	13
10	Methotrexate Gold Nanocarriers: Loading and Release Study: Its Activity in Colon and Lung Cancer Cells. Molecules, 2020, 25, 6049.	3.8	17
11	Removal of Phenolic Compounds from Water Using Copper Ferrite Nanosphere Composites as Fenton Catalysts. Nanomaterials, 2019, 9, 901.	4.1	22
12	Photocatalytic oxidation of diuron using nickel organic xerogel under simulated solar irradiation. Science of the Total Environment, 2019, 650, 1207-1215.	8.0	23
13	Influence of operational parameters on photocatalytic amitrole degradation using nickel organic xerogel under UV irradiation. Arabian Journal of Chemistry, 2018, 11, 564-572.	4.9	13
14	Effect of calcination temperature of a copper ferrite synthesized by a sol-gel method on its structural characteristics and performance as Fenton catalyst to remove gallic acid from water. Journal of Colloid and Interface Science, 2018, 511, 193-202.	9.4	50
15	New carbon xerogel-TiO2 composites with high performance as visible-light photocatalysts for dye mineralization. Applied Catalysis B: Environmental, 2017, 201, 29-40.	20.2	92
16	Mixed iron oxides as Fenton catalysts for gallic acid removal from aqueous solutions. Applied Catalysis B: Environmental, 2016, 196, 207-215.	20.2	84
17	Photoactivity of organic xerogels and aerogels in the photodegradation of herbicides from waters. Applied Catalysis B: Environmental, 2016, 181, 94-102.	20.2	19
18	Effect of HO, SO4â^' and CO3â^'/HCO3 radicals on the photodegradation of the herbicide amitrole by UV radiation in aqueous solution. Chemical Engineering Journal, 2015, 267, 182-190.	12.7	51

MIGUEL ÃNGEL

#	Article	IF	CITATIONS
19	Fenton oxidation of gallic and p-coumaric acids in water assisted by an activated carbon cloth. Water Science and Technology, 2015, 71, 789-794.	2.5	4
20	Bacteria supported on carbon films for water denitrification. Chemical Engineering Journal, 2015, 259, 424-429.	12.7	17
21	Photodegradation of herbicides with different chemical natures in aqueous solution by ultraviolet radiation. Effects of operational variables and solution chemistry. Chemical Engineering Journal, 2014, 255, 307-315.	12.7	31
22	Nitroimidazoles adsorption on activated carbon cloth from aqueous solution. Journal of Colloid and Interface Science, 2013, 401, 116-124.	9.4	38
23	Competitive adsorption of the herbicide fluroxypyr and tannic acid from distilled and tap water on activated carbons and their thermal desorption. Adsorption, 2012, 18, 173-179.	3.0	12
24	Activated carbon cloth as adsorbent and oxidation catalyst forÂtheÂremoval of amitrole from aqueous solution. Adsorption, 2011, 17, 413-419.	3.0	18
25	Heterogeneous and homogeneous Fenton processes using activated carbon for the removal of the herbicide amitrole from water. Applied Catalysis B: Environmental, 2011, 101, 425-430.	20.2	60
26	Adsorption mechanisms of metal cations from water on an oxidized carbon surface. Journal of Colloid and Interface Science, 2010, 345, 461-466.	9.4	42
27	Temperature dependence of the point of zero charge of oxidized and non-oxidized activated carbons. Carbon, 2008, 46, 778-787.	10.3	48
28	Removal of diuron and amitrole from water under static and dynamic conditions using activated carbons in form of fibers, cloth, and grains. Water Research, 2007, 41, 2865-2870.	11.3	53
29	Effect of Surface Chemistry, Solution pH, and Ionic Strength on the Removal of Herbicides Diuron and Amitrole from Water by an Activated Carbon Fiber. Langmuir, 2007, 23, 1242-1247.	3.5	123
30	Temperature Dependence of Herbicide Adsorption from Aqueous Solutions on Activated Carbon Fiber and Cloth. Langmuir, 2006, 22, 9586-9590.	3.5	46
31	About the endothermic nature of the adsorption of the herbicide diuron from aqueous solutions on activated carbon fiber. Carbon, 2006, 44, 2335-2338.	10.3	47
32	A study of the static and dynamic adsorption of Zn(II) ions on carbon materials from aqueous solutions. Journal of Colloid and Interface Science, 2005, 288, 335-341.	9.4	66
33	Cadmium Ion Adsorption on Different Carbon Adsorbents from Aqueous Solutions. Effect of Surface Chemistry, Pore Texture, Ionic Strength, and Dissolved Natural Organic Matter. Langmuir, 2004, 20, 8142-8148.	3.5	104
34	Activated Carbon and Tungsten Oxide Supported on Activated Carbon Catalysts for Toluene Catalytic Combustion. Environmental Science & Technology, 2004, 38, 4664-4670.	10.0	65
35	Application of ammonia intermittent temperature-programmed desorption to evaluate surface acidity of tungsten oxide supported on activated carbon. Journal of Colloid and Interface Science, 2003, 260, 449-453.	9.4	9
36	Tungsten and Tungsten Carbide Supported on Activated Carbon:  Surface Structures and Performance for Ethylene Hydrogenation. Langmuir, 2001, 17, 1752-1756.	3.5	59

MIGUEL ÂNGEL

#	Article	IF	CITATIONS
37	Chemical and physical activation of olive-mill waste water to produce activated carbons. Carbon, 2001, 39, 1415-1420.	10.3	159
38	Title is missing!. Reaction Kinetics and Catalysis Letters, 2000, 71, 137-142.	0.6	19
39	Tungsten catalysts supported on activated carbonI. Preparation and characterization after their heat treatments in inert atmosphere. Journal of Catalysis, 2000, 192, 363-373.	6.2	57
40	Tungsten catalysts supported on activated carbonII. Skeletal isomerization of 1-butene. Journal of Catalysis, 2000, 192, 374-380.	6.2	30
41	Adsorption of SO2 from flowing air by alkaline-oxide-containing activated carbons. Applied Catalysis B: Environmental, 1997, 13, 229-240.	20.2	12
42	Microporous activated carbons from a bituminous coal. Fuel, 1996, 75, 966-970.	6.4	48
43	Effect of alkaline metal oxides on the adsorption of SO2 by activated carbons. Coal Science and Technology, 1995, 1827-1830.	0.0	0