Lindsay Brown

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1359338/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Tropical fruits from Australia as potential treatments for metabolic syndrome. Current Opinion in Pharmacology, 2022, 63, 102182.	1.7	8
2	Anthocyanins in Chronic Diseases: The Power of Purple. Nutrients, 2022, 14, 2161.	1.7	22
3	Functional foods from the tropics to relieve chronic normobaric hypoxia. Respiratory Physiology and Neurobiology, 2021, 286, 103599.	0.7	2
4	Rind from Purple Mangosteen (Garcinia mangostana) Attenuates Diet-Induced Physiological and Metabolic Changes in Obese Rats. Nutrients, 2021, 13, 319.	1.7	13
5	Brown Seaweed Sargassum siliquosum as an Intervention for Diet-Induced Obesity in Male Wistar Rats. Nutrients, 2021, 13, 1754.	1.7	11
6	Addressing the Insufficient Availability of EPA and DHA to Meet Current and Future Nutritional Demands. Nutrients, 2021, 13, 2855.	1.7	9
7	Coffee Pulp, a By-Product of Coffee Production, Modulates Gut Microbiota and Improves Metabolic Syndrome in High-Carbohydrate, High-Fat Diet-Fed Rats. Pathogens, 2021, 10, 1369.	1.2	16
8	Nannochloropsis oceanica as a Microalgal Food Intervention in Diet-Induced Metabolic Syndrome in Rats. Nutrients, 2021, 13, 3991.	1.7	16
9	Pelargonidin 3-glucoside-enriched strawberry attenuates symptoms of DSS-induced inflammatory bowel disease and diet-induced metabolic syndrome in rats. European Journal of Nutrition, 2020, 59, 2905-2918.	1.8	24
10	Physiological and Metabolic Effects of Yellow Mangosteen (Garcinia dulcis) Rind in Rats with Diet-Induced Metabolic Syndrome. International Journal of Molecular Sciences, 2020, 21, 272.	1.8	27
11	Tropical foods as functional foods for metabolic syndrome. Food and Function, 2020, 11, 6946-6960.	2.1	15
12	Reply to: Pelargonidin and its glycosides as dietary chemopreventives attenuating inflammatory bowel disease symptoms through the aryl hydrocarbon receptor. European Journal of Nutrition, 2020, 59, 3865-3866.	1.8	0
13	DNA Methylation in Adipose Tissue and Metabolic Syndrome. Journal of Clinical Medicine, 2020, 9, 2699.	1.0	5
14	Caulerpa lentillifera (Sea Grapes) Improves Cardiovascular and Metabolic Health of Rats with Diet-Induced Metabolic Syndrome. Metabolites, 2020, 10, 500.	1.3	20
15	Carrageenans from the Red Seaweed Sarconema filiforme Attenuate Symptoms of Diet-Induced Metabolic Syndrome in Rats. Marine Drugs, 2020, 18, 97.	2.2	45
16	Dietary Saturated Fatty Acids Modulate Pain Behaviour in Trauma-Induced Osteoarthritis in Rats. Nutrients, 2020, 12, 509.	1.7	12
17	Modulation of gut microbiota by spent coffee grounds attenuates dietâ€induced metabolic syndrome in rats. FASEB Journal, 2020, 34, 4783-4797	0.2	24
18	Saskatoon Berry Amelanchier alnifolia Regulates Glucose Metabolism and Improves Cardiovascular and Liver Signs of Diet-Induced Metabolic Syndrome in Rats. Nutrients, 2020, 12, 931.	1.7	15

#	Article	IF	CITATIONS
19	Anti-inflammatory Components from Functional Foods for Obesity. , 2020, , 285-303.		0
20	Low-Dose Curcumin Nanoparticles Normalise Blood Pressure in Male Wistar Rats with Diet-Induced Metabolic Syndrome. Nutrients, 2019, 11, 1542.	1.7	25
21	Linseed Components Are More Effective Than Whole Linseed in Reversing Diet-Induced Metabolic Syndrome in Rats. Nutrients, 2019, 11, 1677.	1.7	11
22	Cholesterol versus Inflammation as Cause of Chronic Diseases. Nutrients, 2019, 11, 2332.	1.7	18
23	Green coffee ameliorates components of diet-induced metabolic syndrome in rats. Journal of Functional Foods, 2019, 57, 141-149.	1.6	21
24	Cyanidin 3-glucoside from Queen Garnet plums and purple carrots attenuates DSS-induced inflammatory bowel disease in rats. Journal of Functional Foods, 2019, 56, 194-203.	1.6	13
25	The edible native Australian fruit, Davidson's plum (Davidsonia pruriens), reduces symptoms in rats with diet-induced metabolic syndrome. Journal of Functional Foods, 2019, 56, 204-215.	1.6	23
26	Queen Garnet plum juice and raspberry cordial in mildly hypertensive obese or overweight subjects: A randomized, double-blind study. Journal of Functional Foods, 2019, 56, 119-126.	1.6	20
27	Chlorogenic acid attenuates high-carbohydrate, high-fat diet–induced cardiovascular, liver, and metabolic changes in rats. Nutrition Research, 2019, 62, 78-88.	1.3	94
28	An improved rat model for chronic inflammatory bowel disease. Pharmacological Reports, 2019, 71, 149-155.	1.5	16
29	Nutraceuticals in rodent models as potential treatments for human Inflammatory Bowel Disease. Pharmacological Research, 2018, 132, 99-107.	3.1	23
30	Clinical trials using functional foods provide unique challenges. Journal of Functional Foods, 2018, 45, 233-238.	1.6	65
31	Adenineâ€induced chronic kidney disease in rats. Nephrology, 2018, 23, 5-11.	0.7	152
32	Alteration in the liver metabolome of rats with metabolic syndrome after treatment with Hydroxytyrosol. A Mass Spectrometry And Nuclear Magnetic Resonance - based metabolomics study. Talanta, 2018, 178, 246-257.	2.9	14
33	Achacha (Garcinia humilis) Rind Improves Cardiovascular Function in Rats with Diet-Induced Metabolic Syndrome. Nutrients, 2018, 10, 1425.	1.7	18
34	Transient receptor potential (TRP) channels: a metabolic TR(i)P to obesity prevention and therapy. Obesity Reviews, 2018, 19, 1269-1292.	3.1	24
35	Capsaicin in Metabolic Syndrome. Nutrients, 2018, 10, 630.	1.7	105
36	Attenuation of Metabolic Syndrome by EPA/DHA Ethyl Esters in Testosterone-Deficient Obese Rats. Marine Drugs, 2018, 16, 182.	2.2	7

#	Article	IF	CITATIONS
37	Alginates in Metabolic Syndrome. Springer Series in Biomaterials Science and Engineering, 2018, , 223-235.	0.7	Ο
38	Anti-inflammatory γ- and δ-tocotrienols improve cardiovascular, liver and metabolic function in diet-induced obese rats. European Journal of Nutrition, 2017, 56, 133-150.	4.6	61
39	Anthocyanins in chokeberry and purple maize attenuate diet-induced metabolic syndrome in rats. Nutrition, 2017, 41, 24-31.	1.1	49
40	Selenium, Vanadium, and Chromium as Micronutrients to Improve Metabolic Syndrome. Current Hypertension Reports, 2017, 19, 10.	1.5	79
41	Saturated fatty acids induce development of both metabolic syndrome and osteoarthritis in rats. Scientific Reports, 2017, 7, 46457.	1.6	71
42	The flavonoid rutin improves kidney and heart structure and function in an adenine-induced rat model of chronic kidney disease. Journal of Functional Foods, 2017, 33, 85-93.	1.6	36
43	Hydroxytyrosol ameliorates metabolic, cardiovascular and liver changes in a rat model of diet-induced metabolic syndrome: Pharmacological and metabolism-based investigation. Pharmacological Research, 2017, 117, 32-45.	3.1	38
44	The LC–MS-based metabolomics of hydroxytyrosol administration in rats reveals amelioration of the metabolic syndrome. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1041-1042, 45-59.	1.2	27
45	Coconut Products Improve Signs of Diet-Induced Metabolic Syndrome in Rats. Plant Foods for Human Nutrition, 2017, 72, 418-424.	1.4	15
46	Beetroot and Sodium Nitrate Ameliorate Cardiometabolic Changes in Dietâ€Induced Obese Hypertensive Rats. Molecular Nutrition and Food Research, 2017, 61, 1700478.	1.5	23
47	Kappaphycus alvarezii as a Food Supplement Prevents Diet-Induced Metabolic Syndrome in Rats. Nutrients, 2017, 9, 1261.	1.7	50
48	Obesity-associated metabolic syndrome spontaneously induces infiltration of pro-inflammatory macrophage in synovium and promotes osteoarthritis. PLoS ONE, 2017, 12, e0183693.	1.1	69
49	Inulin oligofructose attenuates metabolic syndrome in high-carbohydrate, high-fat diet-fed rats. British Journal of Nutrition, 2016, 116, 1502-1511.	1.2	46
50	Linseed as a Functional Food for the Management of Obesity. , 2016, , 173-187.		2
51	Functional foods as potential therapeutic options for metabolic syndrome. Obesity Reviews, 2015, 16, 914-941.	3.1	127
52	Seaweed Supplements Normalise Metabolic, Cardiovascular and Liver Responses in High-Carbohydrate, High-Fat Fed Rats. Marine Drugs, 2015, 13, 788-805.	2.2	50
53	A Green Algae Mixture of Scenedesmus and Schroederiella Attenuates Obesity-Linked Metabolic Syndrome in Rats. Nutrients, 2015, 7, 2771-2787.	1.7	22
54	Green and Black Cardamom in a Diet-Induced Rat Model of Metabolic Syndrome. Nutrients, 2015, 7, 7691-7707.	1.7	31

#	Article	IF	CITATIONS
55	Should the pharmacological actions of dietary fatty acids in cardiometabolic disorders be classified based on biological or chemical function?. Progress in Lipid Research, 2015, 59, 172-200.	5.3	30
56	Modulation of tissue fatty acids by <scp>l</scp> -carnitine attenuates metabolic syndrome in diet-induced obese rats. Food and Function, 2015, 6, 2496-2506.	2.1	19
57	Nutrient and immune sensing are obligate pathways in metabolism, immunity, and disease. FASEB Journal, 2015, 29, 3612-3625.	0.2	20
58	Mechanisms of enhanced insulin secretion and sensitivity with n-3 unsaturated fatty acids. Journal of Nutritional Biochemistry, 2015, 26, 571-584.	1.9	105
59	Cyanidin 3-glucoside improves diet-induced metabolic syndrome in rats. Pharmacological Research, 2015, 102, 208-217.	3.1	59
60	Gender differences in adenine-induced chronic kidney disease and cardiovascular complications in rats. American Journal of Physiology - Renal Physiology, 2014, 307, F1169-F1178.	1.3	55
61	Effects of red pitaya juice supplementation on cardiovascular and hepatic changes in high-carbohydrate, high-fat diet-induced metabolic syndrome rats. BMC Complementary and Alternative Medicine, 2014, 14, 189.	3.7	36
62	Glibenclamide improves kidney and heart structure and function in the adenine-diet model of chronic kidney disease. Pharmacological Research, 2014, 79, 104-110.	3.1	29
63	Induction of Metabolic Syndrome by Excess Fructose Consumption. , 2014, , 41-63.		1
64	Prebiotics in obesity. Panminerva Medica, 2014, 56, 165-75.	0.2	8
65	Cardioprotective and hepatoprotective effects of ellagitannins from European oak bark (Quercus) Tj ETQq1 1 0.	784314 rg 1.8	BT JOverlock
66	Piperine Attenuates Cardiovascular, Liver and Metabolic Changes in High Carbohydrate, High Fat-Fed Rats. Cell Biochemistry and Biophysics, 2013, 67, 297-304.	0.9	45
67	Ellagic acid attenuates high-carbohydrate, high-fat diet-induced metabolic syndrome in rats. European Journal of Nutrition, 2013, 52, 559-568.	1.8	133
68	Seaweeds as potential therapeutic interventions for the metabolic syndrome. Reviews in Endocrine and Metabolic Disorders, 2013, 14, 299-308.	2.6	44
69	Chronic <scp>l</scp> -arginine treatment improves metabolic, cardiovascular and liver complications in diet-induced obesity in rats. Food and Function, 2013, 4, 83-91.	2.1	34
70	C5aR and C3aR antagonists each inhibit dietâ€induced obesity, metabolic dysfunction, and adipocyte and macrophage signaling. FASEB Journal, 2013, 27, 822-831.	0.2	112
71	Responses to oleic, linoleic and α-linolenic acids in high-carbohydrate, high-fat diet-induced metabolic syndrome in rats. Journal of Nutritional Biochemistry, 2013, 24, 1381-1392.	1.9	43
72	Effects of ALA, EPA and DHA in high-carbohydrate, high-fat diet-induced metabolic syndrome in rats. Journal of Nutritional Biochemistry, 2013, 24, 1041-1052.	1.9	131

#	Article	IF	CITATIONS
73	Adenine-induced chronic kidney and cardiovascular damage in rats. Journal of Pharmacological and Toxicological Methods, 2013, 68, 197-207.	0.3	78
74	Dietâ€induced obesity, adipose inflammation, and metabolic dysfunction correlating with PAR2 expression are attenuated by PAR2 antagonism. FASEB Journal, 2013, 27, 4757-4767.	0.2	93
75	Naringin Improves Diet-Induced Cardiovascular Dysfunction and Obesity in High Carbohydrate, High Fat Diet-Fed Rats. Nutrients, 2013, 5, 637-650.	1.7	163
76	Ferulic Acid Improves Cardiovascular and Kidney Structure and Function in Hypertensive Rats. Journal of Cardiovascular Pharmacology, 2013, 61, 240-249.	0.8	126
77	The Role of n-3 Polyunsaturated Fatty Acids in Human Heart Failure. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2013, 13, 105-117.	0.6	6
78	Osteoporosis and its Association with Non-Gonadal Hormones Involved in Hypertension, Adiposity and Hyperglycaemia. Current Drug Targets, 2013, 14, 1694-1706.	1.0	9
79	Chronic high-carbohydrate, high-fat feeding in rats induces reversible metabolic, cardiovascular, and liver changes. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E1472-E1482.	1.8	57
80	Pharmacological Inhibition of Soluble Epoxide Hydrolase Ameliorates Diet-Induced Metabolic Syndrome in Rats. Experimental Diabetes Research, 2012, 2012, 1-11.	3.8	58
81	Coffee Extract Attenuates Changes in Cardiovascular and Hepatic Structure and Function without Decreasing Obesity in High-Carbohydrate, High-Fat Diet-Fed Male Rats. Journal of Nutrition, 2012, 142, 690-697.	1.3	89
82	An Inhibitor of Phospholipase A2 Group IIA Modulates Adipocyte Signaling and Protects Against Diet-Induced Metabolic Syndrome in Rats. Diabetes, 2012, 61, 2320-2329.	0.3	47
83	Caffeine attenuates metabolic syndrome in diet-induced obese rats. Nutrition, 2012, 28, 1055-1062.	1.1	75
84	Lysine acetylation in obesity, diabetes and metabolic disease. Immunology and Cell Biology, 2012, 90, 39-46.	1.0	101
85	Quercetin Ameliorates Cardiovascular, Hepatic, and Metabolic Changes in Diet-Induced Metabolic Syndrome in Rats. Journal of Nutrition, 2012, 142, 1026-1032.	1.3	209
86	Endurance exercise in a rat model of metabolic syndrome. Canadian Journal of Physiology and Pharmacology, 2012, 90, 1490-1497.	0.7	22
87	Tocotrienols Reverse Cardiovascular, Metabolic and Liver Changes in High Carbohydrate, High Fat Diet-Fed Rats. Nutrients, 2012, 4, 1527-1541.	1.7	43
88	Lipid redistribution by α-linolenic acid-rich chia seed inhibits stearoyl-CoA desaturase-1 and induces cardiac and hepatic protection in diet-induced obese rats. Journal of Nutritional Biochemistry, 2012, 23, 153-162.	1.9	142
89	Tocotrienols as Possible Treatments for Obesity. , 2012, , 195-208.		0
90	Omega-3 fatty acids and metabolic syndrome: Effects and emerging mechanisms of action. Progress in Lipid Research, 2011, 50, 372-387.	5.3	304

#	Article	IF	CITATIONS
91	High-carbohydrate High-fat Diet–induced Metabolic Syndrome and Cardiovascular Remodeling in Rats. Journal of Cardiovascular Pharmacology, 2011, 57, 51-64.	0.8	348
92	Cardiovascular Changes During Maturation and Ageing in Male and Female Spontaneously Hypertensive Rats. Journal of Cardiovascular Pharmacology, 2011, 57, 469-478.	0.8	33
93	Nutrapharmacology of Tocotrienols for Metabolic Syndrome. Current Pharmaceutical Design, 2011, 17, 2206-2214.	0.9	14
94	Stearoyl-CoA Desaturase: A Vital Checkpoint in the Development and Progression of Obesity. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2011, 11, 217-231.	0.6	53
95	High-carbohydrate, High-fat Diet–induced Metabolic Syndrome and Cardiovascular Remodeling in Rats: Erratum. Journal of Cardiovascular Pharmacology, 2011, 57, 610.	0.8	128
96	Rodent Models for Metabolic Syndrome Research. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-14.	3.0	281
97	A Regenerative Antioxidant Protocol of Vitamin E and α -Lipoic Acid Ameliorates Cardiovascular and Metabolic Changes in Fructose-Fed Rats. Evidence-based Complementary and Alternative Medicine, 2011, 2011, 1-8.	0.5	17
98	Rutin Attenuates Metabolic Changes, Nonalcoholic Steatohepatitis, and Cardiovascular Remodeling in High-Carbohydrate, High-Fat Diet-Fed Rats. Journal of Nutrition, 2011, 141, 1062-1069.	1.3	136
99	Antifibrotic activity of an inhibitor of histone deacetylases in DOCAâ€salt hypertensive rats. British Journal of Pharmacology, 2010, 159, 1408-1417.	2.7	118
100	<scp>l</scp> â€Carnitine Attenuates Cardiac Remodelling rather than Vascular Remodelling in Deoxycorticosterone Acetateâ€Salt Hypertensive Rats. Basic and Clinical Pharmacology and Toxicology, 2010, 106, 296-301.	1.2	27
101	Comparison of purple carrot juice and β-carotene in a high-carbohydrate, high-fat diet-fed rat model of the metabolic syndrome. British Journal of Nutrition, 2010, 104, 1322-1332.	1.2	113
102	The Cardiovascular Nutrapharmacology of Resveratrol: Pharmacokinetics, Molecular Mechanisms and Therapeutic Potential. Current Medicinal Chemistry, 2010, 17, 2442-2455.	1.2	69
103	Inflammatory lipid mediators in adipocyte function and obesity. Nature Reviews Endocrinology, 2010, 6, 71-82.	4.3	240
104	Lipid mediators and inflammation in glucose intolerance and insulin resistance. Drug Discovery Today Disease Mechanisms, 2010, 7, e191-e197.	0.8	12
105	Olive Leaf Extract Attenuates Cardiac, Hepatic, and Metabolic Changes in High Carbohydrate–, High Fat–Fed Rats. Journal of Nutrition, 2010, 140, 946-953.	1.3	226
106	Evaluation of the chronic complications of diabetes in a high fructose diet in rats. Indian Journal of Biochemistry and Biophysics, 2009, 46, 66-72.	0.2	39
107	Potential health benefits of Indian spices in the symptoms of the metabolic syndrome: a review. Indian Journal of Biochemistry and Biophysics, 2009, 46, 467-81.	0.2	33
108	Improved cardiovascular function with aminoguanidine in DOCA-salt hypertensive rats. British Journal of Pharmacology, 2006, 148, 902-908.	2.7	32

#	Article	IF	CITATIONS
109	Antioxidant Supplementation Enhances Erythrocyte Antioxidant Status and Attenuates Cyclosporine-Induced Vascular Dysfunction. American Journal of Transplantation, 2006, 6, 41-49.	2.6	19
110	Reversal of cardiac dysfunction by selective ET-A receptor antagonism. British Journal of Pharmacology, 2005, 146, 846-853.	2.7	31
111	l-Arginine attenuates cardiovascular impairment in DOCA-salt hypertensive rats. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H1408-H1416.	1.5	50
112	Cardiac adaptation to endurance exercise in rats. Molecular and Cellular Biochemistry, 2003, 251, 51-59.	1.4	36
113	Echocardiographic assessment of cardiac structure and function in rats. Heart Lung and Circulation, 2002, 11, 167-173.	0.2	69
114	Reversal of cardiac and renal fibrosis by pirfenidone and spironolactone in streptozotocin-diabetic rats. British Journal of Pharmacology, 2001, 133, 687-694.	2.7	192
115	Reversal of cardiovascular remodelling with candesartan. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2001, 2, S141-S147.	1.0	13
116	Cardiac And Vascular Responses In Deoxycorticosterone Acetate-Salt Hypertensive Rats. Clinical and Experimental Pharmacology and Physiology, 2000, 27, 263-269.	0.9	9
117	D-Sotalol: death by the SWORD or deserving of further consideration for clinical use?. Expert Opinion on Investigational Drugs, 2000, 9, 1625-1634.	1.9	6
118	Reversal of cardiac fibrosis in deoxycorticosterone acetate-salt hypertensive rats by inhibition of the renin-angiotensin system. Journal of the American Society of Nephrology: JASN, 1999, 10 Suppl 11, S143-8.	3.0	26
119	Rat models of hypertension, cardiac hypertrophy and failure. Cardiovascular Research, 1998, 39, 89-105.	1.8	404
120	International Society for Heart Research–XVI World Congress. 27-31 May 1998, Rhodes, Greece. IDrugs: the Investigational Drugs Journal, 1998, 1, 286-8.	0.7	0
121	Tissue-specific changes in angiotensin II receptors in streptozotocin-diabetic rats. Journal of Endocrinology, 1997, 154, 355-362.	1.2	62
122	Section Review: Cardiovascular and Renal: Ion channel modulators in the treatment of congestive heart failure. Expert Opinion on Investigational Drugs, 1996, 5, 495-512.	1.9	2
123	Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists, 1994: NEW DRUGS IN THE TREATMENT OF HEART FAILURE. Clinical and Experimental Pharmacology and Physiology, 1995, 22, 829-832.	0.9	2
124	POSITIVE INOTROPIC RESPONSES OF THE SODIUM CHANNEL MODULATOR BDF 9148 IN DISEASED RAT MYOCARDIUM. Clinical and Experimental Pharmacology and Physiology, 1995, 22, 418-422.	0.9	4
125	?1-ADRENOCEPTORS ON RABBIT AORTIC SMOOTH MUSCLE CELLS IN CULTURE AND IN EXPERIMENTAL INTIMAL THICKENING. Clinical and Experimental Pharmacology and Physiology, 1995, 22, 912-918.	0.9	2
126	ANGIOTENSIN RECEPTORS IN CARDIOVASCULAR DISEASES. Clinical and Experimental Pharmacology and Physiology, 1994, 21, 811-818.	0.9	25

#	Article	IF	CITATIONS
127	ION CHANNEL MODULATORS AS POTENTIAL POSITIVE INOTROPIC COMPOUNDS FOR TREATMENT OF HEART FAILURE. Clinical and Experimental Pharmacology and Physiology, 1994, 21, 833-843.	0.9	26
128	DISEASE-INDUCED CHANGES IN ?-ADRENOCEPTOR-MEDIATED CARDIAC AND VASCULAR RESPONSES IN RATS. Clinical and Experimental Pharmacology and Physiology, 1994, 21, 721-728.	0.9	10
129	CARDIAC ?-ADRENOCEPTOR CHANGES IN EXPERIMENTAL HYPERTHYROIDISM IN DOGS. Clinical and Experimental Pharmacology and Physiology, 1992, 19, 761-766.	0.9	5
130	COMPARISON OF INOTROPIC AND CHRONOTROPIC RESPONSES IN RAT ISOLATED ATRIA AND VENTRICLES. Clinical and Experimental Pharmacology and Physiology, 1991, 18, 753-760.	0.9	13
131	POSITIVE INOTROPIC AND VASOCONSTRICTOR RESPONSES TO 14?-AMINOPREGNANE DERIVATIVES IN ISOLATED TISSUES FROM THE GUINEA-PIG. Clinical and Experimental Pharmacology and Physiology, 1990, 17, 589-594.	0.9	2
132	Pharmacological responses to dopamine in isolated guinea-pig cardiovascular tissues: mechanisms of action. Archives Internationales De Pharmacodynamie Et De Thérapie, 1990, 308, 47-62.	0.2	0