Anas El Fathi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1358937/publications.pdf

Version: 2024-02-01

1051969 889612 26 396 10 19 citations h-index g-index papers 26 26 26 461 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Comparison Between Closed-Loop Insulin Delivery System (the Artificial Pancreas) and Sensor-Augmented Pump Therapy: A Randomized-Controlled Crossover Trial. Diabetes Technology and Therapeutics, 2021, 23, 168-174.	2.4	9
2	A Meal Detection Algorithm for the Artificial Pancreas: A Randomized Controlled Clinical Trial in Adolescents With Type 1 Diabetes. Diabetes Care, 2021, 44, 604-606.	4.3	17
3	A Model-Based Insulin Dose Optimization Algorithm for People With Type 1 Diabetes on Multiple Daily Injections Therapy. IEEE Transactions on Biomedical Engineering, 2021, 68, 1208-1219.	2.5	9
4	Fully Automated Artificial Pancreas for Adults With Type 1 Diabetes Using Multiple Hormones: Exploratory Experiments. Canadian Journal of Diabetes, 2021, 45, 734-742.	0.4	9
5	Reducing the need for carbohydrate counting in type 1 diabetes using closedâ€loop automated insulin delivery (artificial pancreas) and empagliflozin: A randomized, controlled, nonâ€inferiority, crossover pilot trial. Diabetes, Obesity and Metabolism, 2021, 23, 1272-1281.	2.2	19
6	Long-term use of the hybrid artificial pancreas by adjusting carbohydrate ratios and programmed basal rate: A reinforcement learning approach. Computer Methods and Programs in Biomedicine, 2021, 200, 105936.	2.6	14
7	Modelling glucose dynamics during moderate exercise in individuals with type 1 diabetes. PLoS ONE, 2021, 16, e0248280.	1.1	11
8	Alleviating carbohydrate counting with a <scp>FiASPâ€plusâ€pramlintide closedâ€loop</scp> delivery system (artificial pancreas): Feasibility and pilot studies. Diabetes, Obesity and Metabolism, 2021, 23, 2090-2098.	2.2	10
9	A fully artificial pancreas versus a hybrid artificial pancreas for type 1 diabetes: a single-centre, open-label, randomised controlled, crossover, non-inferiority trial. The Lancet Digital Health, 2021, 3, e723-e732.	5.9	21
10	Alleviating Carbohydrate Counting With a FiASP-plus-Pramlintide Closed-Loop Delivery System (Artificial Pancreas): Feasibility and Pilot Studies. Canadian Journal of Diabetes, 2021, 45, S29-S30.	0.4	0
11	Titration of Long-Acting Insulin Using Continuous Glucose Monitoring and Smart Insulin Pens in Type 1 Diabetes: A Model-Based Carbohydrate-Free Approach. Frontiers in Endocrinology, 2021, 12, 795895.	1.5	3
12	The Efficacy of Basal Rate and Carbohydrate Ratio Learning Algorithm for Closed-Loop Insulin Delivery (Artificial Pancreas) in Youth with Type 1 Diabetes in a Diabetes Camp. Diabetes Technology and Therapeutics, 2020, 22, 185-194.	2.4	7
13	Accuracy of FreeStyle Libre in Adults with Type 1 Diabetes: The Effect of Sensor Age. Diabetes Technology and Therapeutics, 2020, 22, 203-207.	2.4	24
14	In-Silico Evaluation of Glucose Regulation Using Policy Gradient Reinforcement Learning for Patients with Type 1 Diabetes Mellitus. Applied Sciences (Switzerland), 2020, 10, 6350.	1.3	8
15	10 - Novel Fully Automated Fiasp-Plus-Pramlintide Artificial Pancreas for Type 1 Diabetes: Randomized Controlled Trial. Canadian Journal of Diabetes, 2020, 44, S4-S5.	0.4	2
16	11 - A Meal Detection Algorithm for the Artificial Pancreas: A Randomized Controlled Clinical Trial in Adolescents With Type 1 Diabetes. Canadian Journal of Diabetes, 2020, 44, S5.	0.4	0
17	A pilot <scp>nonâ€inferiority</scp> randomized controlled trial to assess automatic adjustments of insulin doses in adolescents with type 1 diabetes on multiple daily injections therapy. Pediatric Diabetes, 2020, 21, 950-959.	1.2	10
18	Postprandial hyperglycaemia following insulin suspensions by the artificial pancreas: Implications for bolus calculators. Diabetes, Obesity and Metabolism, 2020, 22, 1474-1477.	2.2	0

#	Article	IF	CITATION
19	A Novel Dual-Hormone Insulin-and-Pramlintide Artificial Pancreas for Type 1 Diabetes: A Randomized Controlled Crossover Trial. Diabetes Care, 2020, 43, 597-606.	4.3	92
20	981-P: Postprandial Hyperglycemia following Insulin Suspensions by the Artificial Pancreas: Implications for Bolus Calculators. Diabetes, 2020, 69, .	0.3	3
21	$1119 ext{-P:}$ Alleviating Carbohydrate Counting Burden in Type 1 Diabetes (T1D) with the Artificial Pancreas and Empagliflozin (EMPA). Diabetes, 2020, 69, .	0.3	O
22	196-OR: A Meal Detection Algorithm for the Artificial Pancreas: A Randomized Controlled Clinical Trial in Adolescents with Type 1 Diabetes. Diabetes, 2020, 69, .	0.3	0
23	An Unannounced Meal Detection Module for Artificial Pancreas Control Systems. , 2019, , .		7
24	The Artificial Pancreas and Meal Control: An Overview of Postprandial Glucose Regulation in Type 1 Diabetes. IEEE Control Systems, 2018, 38, 67-85.	1.0	60
25	The potential impact of intelligent power wheelchair use on social participation: perspectives of users, caregivers and clinicians. Disability and Rehabilitation: Assistive Technology, 2015, 10, 191-197.	1.3	21
26	Exploring Powered Wheelchair Users and Their Caregivers' Perspectives on Potential Intelligent Power Wheelchair Use: A Qualitative Study. International Journal of Environmental Research and Public Health, 2014, 11, 2244-2261.	1.2	40