Lee Ching Lew

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1358849/publications.pdf Version: 2024-02-01

LEE CHINCLEW

#	Article	IF	CITATIONS
1	Role of Probiotics in the Management of COVID-19: A Computational Perspective. Nutrients, 2022, 14, 274.	4.1	40
2	Probiotics: The Next Dietary Strategy against Brain Aging. Preventive Nutrition and Food Science, 2022, 27, 1-13.	1.6	7
3	Lactobacillus Sps in Reducing the Risk of Diabetes in High-Fat Diet-Induced Diabetic Mice by Modulating the Gut Microbiome and Inhibiting Key Digestive Enzymes Associated with Diabetes. Biology, 2021, 10, 348.	2.8	16
4	Effects of Potential Probiotic Strains on the Fecal Microbiota and Metabolites of d-Galactose-Induced Aging Rats Fed with High-Fat Diet. Probiotics and Antimicrobial Proteins, 2020, 12, 545-562.	3.9	11
5	Lactobacillus Strains Alleviated Hyperlipidemia and Liver Steatosis in Aging Rats via Activation of AMPK. International Journal of Molecular Sciences, 2020, 21, 5872.	4.1	27
6	Lactobacillus sp. improved microbiota and metabolite profiles of aging rats. Pharmacological Research, 2019, 146, 104312.	7.1	42
7	Lactobacillus plantarum DR7 improved upper respiratory tract infections via enhancing immune and inflammatory parameters: A randomized, double-blind, placebo-controlled study. Journal of Dairy Science, 2019, 102, 4783-4797.	3.4	80
8	Lactobacilli modulated AMPK activity and prevented telomere shortening in ageing rats. Beneficial Microbes, 2019, 10, 883-892.	2.4	18
9	Probiotic Lactobacillus plantarum P8 alleviated stress and anxiety while enhancing memory and cognition in stressed adults: A randomised, double-blind, placebo-controlled study. Clinical Nutrition, 2019, 38, 2053-2064.	5.0	159
10	Probiotic Lactobacillus casei Zhang (LCZ) alleviates respiratory, gastrointestinal & RBC abnormality via immuno-modulatory, anti-inflammatory & anti-oxidative actions. Journal of Functional Foods, 2018, 44, 235-245.	3.4	62
11	Bifidobacterium longum BB536 alleviated upper respiratory illnesses and modulated gut microbiota profiles in Malaysian pre-school children. Beneficial Microbes, 2018, 9, 61-70.	2.4	43
12	DR7 Reduces Cholesterol via Phosphorylation of AMPK That Down-regulated the mRNA Expression of HMG-CoA Reductase. Korean Journal for Food Science of Animal Resources, 2018, 38, 350-361.	1.5	25
13	Lactobacillus fermentum FTDC 8312 combats hypercholesterolemia via alteration of gut microbiota. Journal of Biotechnology, 2017, 262, 75-83.	3.8	52
14	Probiotics and the BSH-related cholesterol lowering mechanism: a Jekyll and Hyde scenario. Critical Reviews in Biotechnology, 2015, 35, 392-401.	9.0	66
15	Effects of ultrasonication on the production of hyaluronic acid by lactobacilli. Acta Alimentaria, 2014, 43, 324-332.	0.7	14
16	Mn ²⁺ and Mg ²⁺ synergistically enhanced lactic acid production by <i>Lactobacillus rhamnosus</i> FTDC 8313 via affecting different stages of the hexose monophosphate pathway. Journal of Applied Microbiology, 2014, 116, 644-653.	3.1	14
17	Fe2+ and Cu2+ Increase the Production of Hyaluronic Acid by Lactobacilli via Affecting Different Stages of the Pentose Phosphate Pathway. Applied Biochemistry and Biotechnology, 2014, 173, 129-142.	2.9	14
18	Study of genotypic characteristics of probiotics Lactobacillus spp using PCR. Asian Pacific Journal of Tropical Disease, 2014, 4, 225.	0.5	0

LEE CHING LEW

#	Article	IF	CITATIONS
19	Dermal bioactives from lactobacilli and bifidobacteria. Annals of Microbiology, 2013, 63, 1047-1055.	2.6	26
20	Mn2+ and Mg2+ improved sphingomyelinase production by Lactobacillus rhamnosus FTDC 8313 and binding affinity to sphingomyelin for generation of ceramides. Process Biochemistry, 2013, 48, 1815-1821.	3.7	4
21	Bioactives from probiotics for dermal health: functions and benefits. Journal of Applied Microbiology, 2013, 114, 1241-1253.	3.1	82
22	Growth optimization of <i>Lactobacillus rhamnosus </i> FTDC 8313 and the production of putative dermal bioactives in the presence of manganese and magnesium ions. Journal of Applied Microbiology, 2013, 114, 526-535.	3.1	26
23	Development of a Probiotic Delivery System from Agrowastes, Soy Protein Isolate, and Microbial Transglutaminase. Journal of Food Science, 2011, 76, H108-15.	3.1	20
24	Development of probiotic carriers using microbial transglutaminase-crosslinked soy protein isolate incorporated with agrowastes. Journal of the Science of Food and Agriculture, 2011, 91, 1406-1415.	3.5	9