Ying Bai

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1358221/ying-bai-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

8,529 82 207 52 h-index g-index citations papers 6.64 10,769 10.2 219 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
207	Regulating Na Occupation to Introduce Non-Fermi-Liquid States of NaCoO for Enhanced Water Oxidation Activity <i>Journal of Physical Chemistry Letters</i> , 2022 , 784-791	6.4	1
206	An Ion-Dipole-Reinforced Polyether Electrolyte with Ion-Solvation Cages Enabling HighWoltage-Tolerant and Ion-Conductive Solid-State Lithium Metal Batteries (Adv. Funct. Mater. 5/2022). <i>Advanced Functional Materials</i> , 2022 , 32, 2270031	15.6	О
205	Bi-salt electrolyte for aqueous rechargeable aluminum battery. <i>Journal of Energy Chemistry</i> , 2022 , 67, 613-620	12	3
204	Multivalent metalBulfur batteries for green and cost-effective energy storage: Current status and challenges. <i>Journal of Energy Chemistry</i> , 2022 , 64, 144-165	12	13
203	Tailoring Defects in Hard Carbon Anode towards Enhanced Na Storage Performance. <i>Energy Material Advances</i> , 2022 , 2022, 1-11	1	6
202	Electrolytes for Rechargeable Aluminum Batteries. <i>Progress in Materials Science</i> , 2022 , 100960	42.2	2
201	Surface Coupling between Mechanical and Electric Fields Empowering Ni-Rich Cathodes with Superior Cyclabilities for Lithium-Ion Batteries <i>Advanced Science</i> , 2022 , e2200622	13.6	2
200	Fabrication of Li1.4Al0.4Ti1.6(PO4)3 quasi-solid electrolyte with high conductivity and compatibility through AAO template. <i>Applied Physics Letters</i> , 2022 , 120, 191902	3.4	4
199	Solvent Effects on Kinetics and Electrochemical Performances of Rechargeable Aluminum Batteries. <i>Energy Material Advances</i> , 2022 , 2022, 1-10	1	4
198	Effect of Different Nitrogen Configurations on Sodium Storage Properties of Carbon Anodes for Sodium Ion Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 56285-56295	9.5	8
197	Unraveling Anionic Redox for Sodium Layered Oxide Cathodes: Breakthroughs and Perspectives. <i>Advanced Materials</i> , 2021 , e2106171	24	14
196	Sodium Storage Mechanism and Optimization Strategies for Hard Carbon Anode of Sodium Ion Batteries. <i>Acta Chimica Sinica</i> , 2021 , 79, 1461	3.3	0
195	High-Mass-Loading Electrodes for Advanced Secondary Batteries and Supercapacitors. <i>Electrochemical Energy Reviews</i> , 2021 , 4, 382-446	29.3	41
194	Boost sodium-ion batteries to commercialization: Strategies to enhance initial Coulombic efficiency of hard carbon anode. <i>Nano Energy</i> , 2021 , 82, 105738	17.1	36
193	Al-Storage Behaviors of Expanded Graphite as High-Rate and Long-Life Cathode Materials for Rechargeable Aluminum Batteries. <i>ACS Applied Materials & Description of Expanded M</i>	9.5	10
192	Enhancing the structure stability of Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode via encapsulating in negative thermal expansion nanocrystalline shell. <i>Nano Energy</i> , 2021 , 83, 105775	17.1	17
191	Interlayer-Expanded MoS2/N-Doped Carbon with Three-Dimensional Hierarchical Architecture as a Cathode Material for High-Performance Aluminum-Ion Batteries. <i>ACS Applied Energy Materials</i> , 2021 , 4, 7064-7072	6.1	6

(2021-2021)

190	Science, 2021 , 1, 2100012		21	
189	Crystal Phase-Controlled Modulation of Binary Transition Metal Oxides for Highly Reversible Li-O Batteries. <i>Nano Letters</i> , 2021 , 21, 5225-5232	11.5	15	
188	Piezoelectricity in three-dimensional carbon allotropes studied by first-principles calculations. Journal of Materials Science, 2021 , 56, 15898-15905	4.3		
187	Elucidating the Mechanism of Fast Na Storage Kinetics in Ether Electrolytes for Hard Carbon Anodes. <i>Advanced Materials</i> , 2021 , 33, e2008810	24	37	
186	Insight to defects regulation on sugarcane waste-derived hard carbon anode for sodium-ion batteries. <i>Journal of Energy Chemistry</i> , 2021 , 55, 499-508	12	24	
185	Lithium metal batteries for high energy density: Fundamental electrochemistry and challenges. Journal of Energy Chemistry, 2021 , 59, 666-687	12	21	
184	Smart oxygen vacancy engineering to enhance water oxidation efficiency by separating the different effects of bulk and surface vacancies. <i>Materials Today Energy</i> , 2021 , 19, 100619	7	4	
183	Multi-electron Reaction Materials for High-Energy-Density Secondary Batteries: Current Status and Prospective. <i>Electrochemical Energy Reviews</i> , 2021 , 4, 35-66	29.3	33	
182	Mn-based oxides for aqueous rechargeable metal ion batteries. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 11472-11500	13	15	
181	Nonvolatile magnetoelectric coupling in two-dimensional ferromagnetic-bilayer/ferroelectric van der Waals heterostructures. <i>Nanoscale</i> , 2021 , 13, 14214-14220	7.7	1	
180	Constructing compatible interface between LiLaZrO solid electrolyte and LiCoO cathode for stable cycling performances at 4.5 V. <i>Nanoscale</i> , 2021 , 13, 7822-7830	7.7	3	
179	Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials. <i>Energy and Environmental Science</i> , 2021 , 14, 2036-2089	35.4	86	
178	Quasi-solid electrolyte developed on hierarchical rambutan-like FAlOOH microspheres with high ionic conductivity for lithium ion batteries. <i>Nanoscale</i> , 2021 , 13, 13310-13317	7.7	1	
177	Probing the Energy Storage Mechanism of Quasi-Metallic Na in Hard Carbon for Sodium-Ion Batteries. <i>Advanced Energy Materials</i> , 2021 , 11, 2003854	21.8	40	
176	Hard Carbon Anode Materials for Sodium-Ion Batteries 2021 , 87-109			
175	Ionic Liquid-Based Electrolytes for Aluminum/Magnesium/Sodium-Ion Batteries. <i>Energy Material Advances</i> , 2021 , 2021, 1-29	1	21	
174	Sodium-Ion Batteries: Probing the Energy Storage Mechanism of Quasi-Metallic Na in Hard Carbon for Sodium-Ion Batteries (Adv. Energy Mater. 11/2021). <i>Advanced Energy Materials</i> , 2021 , 11, 2170041	21.8		
173	Revealing the Correlation of OER with Magnetism: A New Descriptor of Curie/Neel Temperature for Magnetic Electrocatalysts. <i>Advanced Science</i> , 2021 , 8, e2101000	13.6	4	

172	Nature-inspired porous multichannel carbon monolith: Molecular cooperative enables sustainable production and high-performance capacitive energy storage. <i>Informala@Materilly</i> , 2021 , 3, 1154	23.1	4
171	Improved thermal and structural stabilities of LiNi0.6Co0.2Mn0.2O2 cathode by La2Zr2O7 multifunctional modification. <i>Applied Physics Letters</i> , 2021 , 119, 093902	3.4	2
170	How Can the Electrode Influence the Formation of the Solid Electrolyte Interface?. <i>ACS Energy Letters</i> , 2021 , 6, 3307-3320	20.1	12
169	Designing electrode materials for aluminum-ion batteries towards fast diffusion and multi-electron reaction. <i>Journal of Energy Chemistry</i> , 2021 , 60, 229-232	12	10
168	Prompting structure stability of O3NaNi0.5Mn0.5O2 via effective surface regulation based on atomic layer deposition. <i>Ceramics International</i> , 2021 , 47, 28521-28527	5.1	2
167	Chlorinated dual-protective layers as interfacial stabilizer for dendrite-free lithium metal anode. <i>Energy Storage Materials</i> , 2021 , 41, 485-494	19.4	18
166	Boosting Sodium Storage Performance of Hard Carbon Anodes by Pore Architecture Engineering. <i>ACS Applied Materials & District Action Amodes and Materials & District Action Action Materials & District Action Action Materials & District & District</i>	9.5	7
165	Irreplaceable carbon boosts Li-O2 batteries: From mechanism research to practical application. <i>Nano Energy</i> , 2021 , 89, 106464	17.1	14
164	Boosting the ultrahigh initial coulombic efficiency of porous carbon anodes for sodium-ion batteries via in situ fabrication of a passivation interface. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 1078	3 0 3107	88
163	Hyperbranched polyether boosting ionic conductivity of polymer electrolytes for all-solid-state sodium ion batteries. <i>Chemical Engineering Journal</i> , 2020 , 394, 124885	14.7	25
162	Flame-retardant gel polymer electrolyte and interface for quasi-solid-state sodium ion batteries. <i>Chemical Engineering Journal</i> , 2020 , 401, 126065	14.7	33
161	A Na3V2(PO4)2O1.6F1.4 Cathode of Zn-Ion Battery Enabled by a Water-in-Bisalt Electrolyte. <i>Advanced Functional Materials</i> , 2020 , 30, 2003511	15.6	54
160	Hyperaccumulation Route to Ca-Rich Hard Carbon Materials with Cation Self-Incorporation and Interlayer Spacing Optimization for High-Performance Sodium-Ion Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 10544-10553	9.5	37
159	An Extremely Fast Charging Li3V2(PO4)3 Cathode at a 4.8 V Cutoff Voltage for Li-Ion Batteries. <i>ACS Energy Letters</i> , 2020 , 5, 1763-1770	20.1	34
158	Na2Li2Ti6O14 nanowires as ultra-long cycling performance anode material for lithium ion storage. <i>Ceramics International</i> , 2020 , 46, 15699-15704	5.1	7
157	PYFSI-Infiltrated SBA-15 as Nonflammable and High Ion-Conductive Ionogel Electrolytes for Quasi-Solid-State Sodium-Ion Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 22981-22991	9.5	17
156	Reversible Al3+ storage mechanism in anatase TiO2 cathode material for ionic liquid electrolyte-based aluminum-ion batteries. <i>Journal of Energy Chemistry</i> , 2020 , 51, 72-80	12	38
155	Decoration by dual-phase Li2ZrO3 islands with coreShell structures enhances the electrochemical performance of high-voltage LiNi0.5Mn1.5O4. <i>Applied Physics Letters</i> , 2020 , 116, 021601	3.4	7

(2019-2020)

154	Rational construction and decoration of Fe0.5Nb24.5O62M@C nanowires as superior anode material for lithium storage. <i>Chemical Engineering Journal</i> , 2020 , 384, 123314	14.7	9
153	The Compensation Effect Mechanism of Fe-Ni Mixed Prussian Blue Analogues in Aqueous Rechargeable Aluminum-Ion Batteries. <i>ChemSusChem</i> , 2020 , 13, 732-740	8.3	51
152	Constructing tri-functional modification for spinel LiNi0.5Mn1.5O4 via fast ion conductor. <i>Journal of Power Sources</i> , 2020 , 450, 227677	8.9	20
151	Local Electric-Field-Driven Fast Li Diffusion Kinetics at the Piezoelectric LiTaO Modified Li-Rich Cathode-Electrolyte Interphase. <i>Advanced Science</i> , 2020 , 7, 1902538	13.6	54
150	Developing an Interpenetrated Porous and Ultrasuperior Hard-Carbon Anode via a Promising Molten-Salt Evaporation Method. <i>ACS Applied Materials & Description of the Evaporation Method.</i> 12, 2481-2489	9.5	36
149	Co-Construction of Sulfur Vacancies and Heterojunctions in Tungsten Disulfide to Induce Fast Electronic/Ionic Diffusion Kinetics for Sodium-Ion Batteries. <i>Advanced Materials</i> , 2020 , 32, e2005802	24	100
148	Analysis of the Stable Interphase Responsible for the Excellent Electrochemical Performance of Graphite Electrodes in Sodium-Ion Batteries. <i>Small</i> , 2020 , 16, e2003268	11	37
147	Stepwise Intercalation-Conversion-Intercalation Sodiation Mechanism in CuInS2 Prompting Sodium Storage Performance. <i>ACS Energy Letters</i> , 2020 , 5, 3725-3732	20.1	15
146	Rational Tuning of a LiSiO-Based Hybrid Interface with Unique Stepwise Prelithiation for Dendrite-Proof and High-Rate Lithium Anodes. <i>ACS Applied Materials & Description of Applied Materials</i>	- 393 71	15
145	Polymer electrolytes and interfaces toward solid-state batteries: Recent advances and prospects. <i>Energy Storage Materials</i> , 2020 , 33, 26-54	19.4	51
144	Fast ion conductor modified double-polymer (PVDF and PEO) matrix electrolyte for solid lithium-ion batteries. <i>Solid State Ionics</i> , 2020 , 355, 115419	3.3	14
143	High-Voltage Layered Ternary Oxide Cathode Materials: Failure Mechanisms and Modification Methods Chinese Journal of Chemistry, 2020 , 38, 1847-1869	4.9	3
142	Promoting electrochemical performances of LiNi0.5Mn1.5O4 cathode via YF3 surface coating. <i>Solid State Ionics</i> , 2020 , 357, 115464	3.3	7
141	Investigating the electroactivity of nitrogen species in MoC nanoparticles/N-doped carbon nanosheets for high-performance Na/Li-ion batteries. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 21298-2	2 13 05	11
140	Metal selenides for high performance sodium ion batteries. <i>Chemical Engineering Journal</i> , 2020 , 380, 122557	14.7	86
139	Superior sodium-storage behavior of flexible anatase TiO2 promoted by oxygen vacancies. <i>Energy Storage Materials</i> , 2020 , 25, 903-911	19.4	73
138	Toward better electrode/electrolyte interfaces in the ionic-liquid-based rechargeable aluminum batteries. <i>Journal of Energy Chemistry</i> , 2020 , 45, 98-102	12	33
137	High-Capacity Interstitial Mn-Incorporated MnFeO/Graphene Nanocomposite for Sodium-Ion Battery Anodes. <i>ACS Applied Materials & Acs Applied & Acs Applied Materials & Acs Applied & Acs Appl</i>	9.5	27

Perspectives for restraining harsh lithium dendrite growth: Towards robust lithium metal anodes.

Electrochemical performance of Li-rich Li[Li0.2Mn0.56Ni0.17Co0.07]O2 cathode stabilized by metastable Li2SiO3 surface modification for advanced Li-ion batteries. *Electrochimica Acta*, **2018**,

166

34

19.4

265, 244-253

Energy Storage Materials, 2018, 15, 148-170

120

119

(2018-2018)

118	Remarkable Effect of Sodium Alginate Aqueous Binder on Anatase TiO as High-Performance Anode in Sodium Ion Batteries. <i>ACS Applied Materials & District Remarkable</i> , 10, 5560-5568	9.5	69
117	3D Electronic Channels Wrapped Large-Sized Na V (PO) as Flexible Electrode for Sodium-Ion Batteries. <i>Small</i> , 2018 , 14, e1702864	11	83
116	Carbon-coated Bi5Nb3O15 as anode material in rechargeable batteries for enhanced lithium storage. <i>Ceramics International</i> , 2018 , 44, 11505-11511	5.1	8
115	Enhanced Electrochemical Performance of LiNi0.5Mn1.5O4 Cathode Material by YPO4 Surface Modification. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 5818-5825	8.3	38
114	Cationic polymer binder inhibit shuttle effects through electrostatic confinement in lithium sulfur batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 6959-6966	13	51
113	Mesoporous TiO2 microparticles formed by the oriented attachment of nanocrystals: A super-durable anode material for sodium-ion batteries. <i>Nano Research</i> , 2018 , 11, 1563-1574	10	23
112	Expanding Interlayer Spacing of Hard Carbon by Natural K Doping to Boost Na-Ion Storage. <i>ACS Applied Materials & Doping Land </i>	9.5	64
111	A facile strategy to enhance the stability of Li-rich cathode: Electrochemical performance improvement and mechanism exploration. <i>Ceramics International</i> , 2018 , 44, 17425-17433	5.1	15
110	Hard carbon anode materials for sodium-ion batteries. Functional Materials Letters, 2018, 11, 1830003	1.2	39
109	Sodium Ion Batteries: Stable CarbonBelenium Bonds for Enhanced Performance in Tremella-Like 2D Chalcogenide Battery Anode (Adv. Energy Mater. 23/2018). <i>Advanced Energy Materials</i> , 2018 , 8, 187	0768	9
108	Phosphorus-Doped Hard Carbon Nanofibers Prepared by Electrospinning as an Anode in Sodium-Ion Batteries. <i>ACS Applied Materials & Dope Materia</i>	9.5	119
107	Stabilized structural and electrochemical properties of LiNi0.5Mn1.5O4 via ZrF4 nanolayer modification for Li-ion batteries. <i>Solid State Ionics</i> , 2018 , 324, 7-12	3.3	11
106	Stable CarbonBelenium Bonds for Enhanced Performance in Tremella-Like 2D Chalcogenide Battery Anode. <i>Advanced Energy Materials</i> , 2018 , 8, 1800927	21.8	52
105	LaF3 nanolayer surface modified spinel LiNi0.5Mn1.5O4 cathode material for advanced lithium-ion batteries. <i>Ceramics International</i> , 2018 , 44, 4058-4066	5.1	33
104	An interface-reconstruction effect for rechargeable aluminum battery in ionic liquid electrolyte to enhance cycling performances. <i>Green Energy and Environment</i> , 2018 , 3, 71-77	5.7	34
103	Electrochemical Behavior of Al(III) and Formation of Different Phases Al-Ni Alloys Deposits from LiCl-KCl-AlCl[Molten Salt. <i>Materials</i> , 2018 , 11,	3.5	2
102	Integrated Surface Functionalization of Li-Rich Cathode Materials for Li-Ion Batteries. <i>ACS Applied Materials & Acs Applied & A</i>	9.5	43
101	Hierarchical nanoporous FAl2O3 encapsulated quasi solid electrolyte with superior conductivity and high safety for lithium metal batteries. <i>Solid State Ionics</i> , 2018 , 326, 110-115	3.3	14

100	Chemical Synthesis of K2S2 and K2S3 for Probing Electrochemical Mechanisms in KB Batteries. <i>ACS Energy Letters</i> , 2018 , 3, 2858-2864	20.1	47
99	Kinetically Determined Phase Transition from Stage II (LiC) to Stage I (LiC) in a Graphite Anode for Li-Ion Batteries. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 5567-5573	6.4	35
98	Unveil the mechanism of solid electrolyte interphase on Na3V2(PO4)3 formed by a novel NaPF6/BMITFSI ionic liquid electrolyte. <i>Nano Energy</i> , 2018 , 51, 524-532	17.1	39
97	Mille-feuille shaped hard carbons derived from polyvinylpyrrolidone via environmentally friendly electrostatic spinning for sodium ion battery anodes. <i>RSC Advances</i> , 2017 , 7, 5519-5527	3.7	40
96	Polyanion-Type Electrode Materials for Sodium-Ion Batteries. <i>Advanced Science</i> , 2017 , 4, 1600275	13.6	250
95	Multilayered Electride CaN Electrode via Compression Molding Fabrication for Sodium Ion Batteries. <i>ACS Applied Materials & Date of Society</i> 10, 9, 6666-6669	9.5	36
94	Enhanced Structural and Electrochemical Stability of Self-Similar Rice-Shaped SnO Nanoparticles. <i>ACS Applied Materials & District Mate</i>	9.5	42
93	Open-Structured V2O5hH2O Nanoflakes as Highly Reversible Cathode Material for Monovalent and Multivalent Intercalation Batteries. <i>Advanced Energy Materials</i> , 2017 , 7, 1602720	21.8	91
92	NaNH2NaBH4 hydrogen storage composite materials synthesized via liquid phase ball-milling: Influence of CoNiB catalyst on the dehydrogenation performances. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 14725-14733	6.7	15
91	Building an Electronic Bridge via Ag Decoration To Enhance Kinetics of Iron Fluoride Cathode in Lithium-Ion Batteries. <i>ACS Applied Materials & Discrete Faces</i> , 2017 , 9, 19852-19860	9.5	37
90	Energy Storage: Polyanion-Type Electrode Materials for Sodium-Ion Batteries (Adv. Sci. 3/2017). <i>Advanced Science</i> , 2017 , 4,	13.6	1
89	Enhanced hydrogen generation by solid-state thermal decomposition of NaNH2NaBH4 composite promoted with MgtoB catalyst. <i>Journal of Materials Research</i> , 2017 , 32, 1203-1209	2.5	6
88	3D Hierarchical nano-flake/micro-flower iron fluoride with hydration water induced tunnels for secondary lithium battery cathodes. <i>Nano Energy</i> , 2017 , 32, 10-18	17.1	55
87	Quick Activation of Nanoporous Anatase TiO as High-Rate and Durable Anode Materials for Sodium-Ion Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 39432-39440	9.5	48
86	Wet-chemical coordination synthesized Li3V2(PO4)3/C for Li-ion battery cathodes. <i>Journal of Alloys and Compounds</i> , 2017 , 729, 49-56	5.7	22
85	Metal-Ion Batteries: Open-Structured V2O5hH2O Nanoflakes as Highly Reversible Cathode Material for Monovalent and Multivalent Intercalation Batteries (Adv. Energy Mater. 14/2017). <i>Advanced Energy Materials</i> , 2017 , 7,	21.8	15
84	Insight to the Thermal Decomposition and Hydrogen Desorption Behaviors of NaNH-NaBH Hydrogen Storage Composite. <i>ACS Applied Materials & Description Behaviors of NaNH-NaBH Materials & Description Behaviors & D</i>	9.5	14
83	Reorganizing electronic structure of Li3V2(PO4)3 using polyanion (BO3)3[Itowards better electrochemical performances. <i>Rare Metals</i> , 2017 , 36, 397-402	5.5	11

(2015-2017)

82	Confirming reversible Al 3+ storage mechanism through intercalation of Al 3+ into V 2 O 5 nanowires in a rechargeable aluminum battery. <i>Energy Storage Materials</i> , 2017 , 6, 9-17	19.4	197
81	Improved Li storage performance in SnO2 nanocrystals by a synergetic doping. <i>Scientific Reports</i> , 2016 , 6, 18978	4.9	55
80	An Effectively Activated Hierarchical Nano-/Microspherical Li1.2Ni0.2Mn0.6O2 Cathode for Long-Life and High-Rate Lithium-Ion Batteries. <i>ChemSusChem</i> , 2016 , 9, 728-35	8.3	52
79	Bead-curtain shaped SiC@SiO2 core-shell nanowires with superior electrochemical properties for lithium-ion batteries. <i>Electrochimica Acta</i> , 2016 , 190, 33-39	6.7	29
78	Core-shell Si@TiO2 nanosphere anode by atomic layer deposition for Li-ion batteries. <i>Journal of Power Sources</i> , 2016 , 308, 75-82	8.9	81
77	Multifunctional ZrF4 nanocoating for improving lithium storage performances in layered Li[Li0.2Ni0.17Co0.07Mn0.56]O2. <i>Solid State Ionics</i> , 2016 , 284, 7-13	3.3	18
76	Three-dimensional fusiform hierarchical micro/nano Li1.2Ni0.2Mn0.6O2 with a preferred orientation (110) plane as a high energy cathode material for lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 5942-5951	13	89
75	Ag enhanced electrochemical performance for Na2Li2Ti6O14 anode in rechargeable lithium-ion batteries. <i>Ceramics International</i> , 2016 , 42, 6874-6882	5.1	14
74	Zr-containing phosphate coating to enhance the electrochemical performances of Li-rich layer-structured Li[Li0.2Ni0.17Co0.07Mn0.56]O2. <i>Electrochimica Acta</i> , 2016 , 193, 96-103	6.7	28
73	Enhanced Sodium Ion Storage Behavior of P2-Type Na(2/3)Fe(1/2)Mn(1/2)O2 Synthesized via a Chelating Agent Assisted Route. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 2857-65	9.5	97
72	High-Rate, Durable Sodium-Ion Battery Cathode Enabled by Carbon-Coated Micro-Sized Na3V2(PO4)3 Particles with Interconnected Vertical Nanowalls. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1500740	4.6	39
71	Hierarchical Mesoporous Lithium-Rich Li[Li0.2Ni0.2Mn0.6]O2 Cathode Material Synthesized via Ice Templating for Lithium-Ion Battery. <i>ACS Applied Materials & amp; Interfaces</i> , 2016 , 8, 18832-40	9.5	74
70	Controllable synthesis of high-rate and long cycle-life Na3V2(PO4)3 for sodium-ion batteries. <i>Journal of Power Sources</i> , 2016 , 326, 14-22	8.9	65
69	Na-Rich NaVNi(PO)/C for Sodium Ion Batteries: Controlling the Doping Site and Improving the Electrochemical Performances. <i>ACS Applied Materials & Samp; Interfaces</i> , 2016 , 8, 27779-27787	9.5	81
68	High-Voltage and Noncorrosive Ionic Liquid Electrolyte Used in Rechargeable Aluminum Battery. <i>ACS Applied Materials & Distributed & Dis</i>	9.5	89
67	Highly Safe Ionic Liquid Electrolytes for Sodium-Ion Battery: Wide Electrochemical Window and Good Thermal Stability. <i>ACS Applied Materials & Englishing Company Stability</i> . <i>ACS Applied Materials & Englishing</i> 1.	9.5	69
66	Effects of Mg doping on the remarkably enhanced electrochemical performance of Na3V2(PO4)3 cathode materials for sodium ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 9578-9586	13	197
65	Na3V2(PO4)3/C nanorods as advanced cathode material for sodium ion batteries. <i>Solid State Ionics</i> , 2015 , 278, 281-286	3.3	37

64	Toward 5 V Li-Ion Batteries: Quantum Chemical Calculation and Electrochemical Characterization of Sulfone-Based High-Voltage Electrolytes. <i>ACS Applied Materials & Acs Applied & Acs Applied Materials & Acs Applied & Acs </i>	9.5	48
63	Improved electrochemical performance of spinel LiMn(1.5)Ni(0.5)O4 through MgF2 nano-coating. <i>Nanoscale</i> , 2015 , 7, 15609-17	7.7	52
62	Sn-doped TiO2 nanotubes as superior anode materials for sodium ion batteries. <i>Chemical Communications</i> , 2015 , 51, 8261-4	5.8	116
61	Superior Conductive Solid-like Electrolytes: Nanoconfining Liquids within the Hollow Structures. <i>Nano Letters</i> , 2015 , 15, 3398-402	11.5	104
60	In Situ Analysis of Gas Generation in Lithium-Ion Batteries with Different Carbonate-Based Electrolytes. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 22751-5	9.5	52
59	Anion-effects on electrochemical properties of ionic liquid electrolytes for rechargeable aluminum batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 22677-22686	13	129
58	Understanding the combined effects of microcrystal growth and band gap reduction for Fe(1)Ti F3 nanocomposites as cathode materials for lithium-ion batteries. <i>Nano Energy</i> , 2015 , 17, 140-151	17.1	45
57	Conductive Polymer Binder for High-Tap-Density Nanosilicon Material for Lithium-Ion Battery Negative Electrode Application. <i>Nano Letters</i> , 2015 , 15, 7927-32	11.5	96
56	Budding willow branches shaped Na3V2(PO4)3/C nanofibers synthesized via an electrospinning technique and used as cathode material for sodium ion batteries. <i>Journal of Power Sources</i> , 2015 , 273, 784-792	8.9	119
55	AlF3 surface-coated Li[Li0.2 Ni0.17 Co0.07 Mn0.56]O2 nanoparticles with superior electrochemical performance for lithium-ion batteries. <i>ChemSusChem</i> , 2015 , 8, 2544-50	8.3	45
54	Lithium-Rich Nanoscale Li1.2Mn0.54Ni0.13Co0.13O2 Cathode Material Prepared by Co-Precipitation Combined Freeze Drying (CPED) for Lithium-Ion Batteries. <i>Energy Technology</i> , 2015 , 3, 843-850	3.5	37
53	Al-doped SnO2 hollow sphere as a novel anode material for lithium ion battery. <i>Solid State Ionics</i> , 2015 , 272, 133-137	3.3	21
52	Improved electrochemical and thermal performances of layered Li[Li0.2Ni0.17Co0.07Mn0.56]O2 via Li2ZrO3 surface modification. <i>Journal of Power Sources</i> , 2015 , 282, 378-384	8.9	84
51	Hard carbon originated from polyvinyl chloride nanofibers as high-performance anode material for Na-ion battery. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 5598-604	9.5	183
50	Binder-free V2O5 cathode for greener rechargeable aluminum battery. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 80-4	9.5	234
49	Novel AlF3 surface modified spinel LiMn1.5Ni0.5O4 for lithium-ion batteries: performance characterization and mechanism exploration. <i>Electrochimica Acta</i> , 2015 , 158, 73-80	6.7	61
48	Improved electrochemical properties of Sn-doped TiO2 nanotube as an anode material for lithium ion battery. <i>Journal of Solid State Electrochemistry</i> , 2014 , 18, 1933-1940	2.6	22
47	Improved electron/Li-ion transport and oxygen stability of Mo-doped Li2MnO3. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 4811	13	76

46	First-principles investigation in the Raman and infrared spectra of sp3 carbon allotropes. <i>Carbon</i> , 2014 , 78, 70-78	10.4	21
45	Nickel and nitrogen co-doped tin dioxide nano-composite as a potential anode material for lithium-ion batteries. <i>Electrochimica Acta</i> , 2014 , 143, 257-264	6.7	26
44	Light-weight NaNH2NaBH4 hydrogen storage material synthesized via liquid phase ball milling. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 13576-13582	6.7	12
43	Performance improvement of LiCoO2 by MgF2 surface modification and mechanism exploration. <i>Electrochimica Acta</i> , 2014 , 134, 347-354	6.7	54
42	Influences of Ni-Co-B catalyst on the thermal decomposition of light-weight NaNH2-NaBH4 hydrogen storage material. <i>Journal of Renewable and Sustainable Energy</i> , 2014 , 6, 023108	2.5	5
41	Copper and nitrogen co-doped SnO2 hierarchical microspheres as a novel anode material for lithium ion batteries. <i>Materials Letters</i> , 2014 , 133, 168-170	3.3	6
40	A novel pineapple-structured Si/TiO2 composite as anode material for lithium ion batteries. <i>Journal of Alloys and Compounds</i> , 2014 , 609, 86-92	5.7	33
39	Sodium Ion Battery: A Promising Energy-storage Candidate for Supporting Renewable Electricity. <i>Acta Chimica Sinica</i> , 2014 , 72, 21	3.3	26
38	Performance improvement of spinel LiMn2O4 cathode material by LaF3 surface modification. <i>Solid State Ionics</i> , 2013 , 253, 1-7	3.3	19
37	Surface modification of spinel LiMn2O4 with FeF3 for lithium ion batteries. <i>Electrochimica Acta</i> , 2013 , 108, 727-735	6.7	39
36	A novel approach to improve the electrochemical performances of layered LiNi1/3Co1/3Mn1/3O2 cathode by YPO4 surface coating. <i>Electrochimica Acta</i> , 2013 , 112, 414-421	6.7	23
35	Enhanced cycling stability and thermal stability of YPO4-coated LiMn2O4 cathode materials for lithium ion batteries. <i>Solid State Ionics</i> , 2013 , 247-248, 22-29	3.3	28
34	High performance FeFx/C composites as cathode materials for lithium-ion batteries. <i>Journal of Renewable and Sustainable Energy</i> , 2013 , 5, 021402	2.5	16
33	Electrochemical performances of Si/TiO2 composite synthesized by hydrothermal method. <i>Journal of Alloys and Compounds</i> , 2013 , 579, 7-11	5.7	17
32	High capacity cobalt boride prepared via vacuum freeze-drying method and used as anode material for alkaline secondary battery. <i>Journal of Renewable and Sustainable Energy</i> , 2013 , 5, 021401	2.5	6
31	Pressure induced variation of second harmonic efficiency of K3B6O10Cl. <i>Applied Physics Letters</i> , 2013 , 103, 101902	3.4	13
30	Rate performance of Li3V2(PO4)3/C cathode material and its Li+ ion intercalation behavior. <i>Journal of Alloys and Compounds</i> , 2012 , 513, 236-241	5.7	36
29	Improved cycling performance of 5 v spinel LiMn1.5 Ni0.5 O4 by amorphous FePO4 coating. <i>Journal of Power Sources</i> , 2012 , 219, 333-338	8.9	64

28	Thermal decomposition kinetics of light-weight composite NaNH2NaBH4 hydrogen storage materials for fuel cells. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 12973-12979	6.7	14
27	Characterizations of composite NaNH2NaBH4 hydrogen storage materials synthesized via ball milling. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 889-893	6.7	23
26	Raman study of pure, C-coated and Co-doped LiFePO4: thermal effect and phase stability upon laser heating. <i>Journal of Raman Spectroscopy</i> , 2011 , 42, 831-838	2.3	31
25	NittoB catalyst-promoted hydrogen generation by hydrolyzing NaBH4 solution for in situ hydrogen supply of portable fuel cells. <i>Catalysis Today</i> , 2011 , 170, 33-39	5.3	41
24	Enhanced cycling stability of LiMn2O4 cathode by amorphous FePO4 coating. <i>Electrochimica Acta</i> , 2011 , 56, 6612-6618	6.7	75
23	Thermally stable hyperbranched polyether-based polymer electrolyte for lithium-ion batteries. Journal Physics D: Applied Physics, 2010 , 43, 035501	3	11
22	Electrochemical performance of flowerlike CaSnO3 as high capacity anode material for lithium-ion batteries. <i>Electrochimica Acta</i> , 2010 , 55, 3891-3896	6.7	36
21	Highly active cobalt-based catalysts in situ prepared from CoX2 (X=Cl[INO3]] and used for promoting hydrogen generation from NaBH4 solution. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 2675-2679	6.7	29
20	Synthesis and characteristics of a silicon-containing polymer, manufacture of an electrolyte membrane from the polymer and poly(vinylidene fluoride-co-hexafluoropropene), and property testing of the membrane. <i>Journal of Applied Polymer Science</i> , 2009 , 114, 1086-1093	2.9	3
19	Preparation and characterization of solid polymer electrolytes based on PHEMO and PVDF-HFP. <i>Solid State Ionics</i> , 2009 , 180, 677-680	3.3	48
18	Preparation and electrochemical properties of TiO2 hollow spheres as an anode material for lithium-ion batteries. <i>Journal of Power Sources</i> , 2009 , 191, 614-618	8.9	120
17	Investigation of FeB alloy prepared by an electric arc method and used as the anode material for alkaline secondary batteries. <i>Electrochemistry Communications</i> , 2009 , 11, 145-148	5.1	31
16	Novel ternary metal boride MgtoB alloys as anode materials for alkaline secondary batteries. <i>Electrochemistry Communications</i> , 2009 , 11, 2173-2176	5.1	14
15	Fast hydrogen generation from NaBH4 solution accelerated by ferric catalysts. <i>Materials Letters</i> , 2008 , 62, 4242-4244	3.3	28
14	Preparation and evaluation of two kinds of solid polymer electrolytes made from crosslinked poly(ether urethane) elastomers consisting of a comb-like and a hyperbranched polyether. <i>Journal of Applied Polymer Science</i> , 2008 , 109, 1955-1961	2.9	1
13	Experimental and theoretical studies of Raman spectroscopy on 4-mercaptopyridine aqueous solution and 4-mercaptopyridine/Ag complex system. <i>Journal of Raman Spectroscopy</i> , 2007 , 38, 1106-1	1713	46
12	New concept of surface modification to LiCoO2. <i>Journal of Power Sources</i> , 2007 , 174, 328-334	8.9	34
11	Synthesis of copolymers of 3-acryloyloxymethyl-3?-methyloxetane and 3-(2-(2-methoxyethylenoxy)ethylenoxy)ethylenoxy)-3?-methyloxetane and their ionic conductivity properties. <i>Frontiers of Chemical Engineering in China</i> , 2007 , 1, 343-348		2

LIST OF PUBLICATIONS

10	Improving the Performances of LiCoO[sub 2] Cathode Materials by Soaking Nano-Alumina in Commercial Electrolyte. <i>Journal of the Electrochemical Society</i> , 2007 , 154, A55	3.9	38
9	Hydrogen Generation from Ethanol Steam Reforming over Rare Earth Promoted Nickel-based Catalysts 2007 ,		1
8	Carbon-supported platinum catalysts for on-site hydrogen generation from NaBH4 solution. <i>Materials Letters</i> , 2006 , 60, 2236-2239	3.3	165
7	Cobalt boride catalysts for hydrogen generation from alkaline NaBH4 solution. <i>Materials Letters</i> , 2005 , 59, 1748-1751	3.3	178
6	Surface engineering based on in situ electro-polymerization to boost the initial Coulombic efficiency of hard carbon anode for sodium-ion battery. <i>Rare Metals</i> ,1	5.5	5
5	Phase-junction engineering boosts the performance of CoSe2 for efficient sodium/potassium storage. <i>Journal of Materials Chemistry A</i> ,	13	10
4	An Ion-Dipole-Reinforced Polyether Electrolyte with Ion-Solvation Cages Enabling HighWoltage-Tolerant and Ion-Conductive Solid-State Lithium Metal Batteries. <i>Advanced Functional Materials</i> ,2107764	15.6	7
3	Recent advances in Ni-Fe (Oxy)hydroxide electrocatalysts for the oxygen evolution reaction in alkaline electrolyte targeting industrial applications. <i>Nano Select</i> ,	3.1	1
2	8.5 D m-Thick Flexible-Rigid Hybrid Solid Electrolyte/Lithium Integration for Air-Stable and Interface-Compatible All-Solid-State Lithium Metal Batteries. <i>Advanced Energy Materials</i> , 2200368	21.8	5
1	Ceramic-Based Solid-State Electrolytes. <i>ACS Symposium Series</i> ,295-318	0.4	