List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1357719/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Incidence, Prevalence, and Clinical Course of Idiopathic Pulmonary Fibrosis. Chest, 2010, 137, 129-137.	0.4	420
2	The Effects of Changes in Utilization and Technological Advancements ofÂCross-Sectional Imaging onÂRadiologist Workload. Academic Radiology, 2015, 22, 1191-1198.	1.3	266
3	Mortality prediction in idiopathic pulmonary fibrosis: evaluation of computer-based CT analysis with conventional severity measures. European Respiratory Journal, 2017, 49, 1601011.	3.1	211
4	Automated quantification of radiological patterns predicts survival in idiopathic pulmonary fibrosis. European Respiratory Journal, 2014, 43, 204-212.	3.1	184
5	Effect of Recombinant Human Pentraxin 2 vs Placebo on Change in Forced Vital Capacity in Patients With Idiopathic Pulmonary Fibrosis. JAMA - Journal of the American Medical Association, 2018, 319, 2299.	3.8	170
6	Automated Quantitative Computed Tomography Versus Visual Computed Tomography Scoring in Idiopathic Pulmonary Fibrosis. Journal of Thoracic Imaging, 2016, 31, 304-311.	0.8	158
7	Mortality Associated With Nephropathy After Radiographic Contrast Exposure. Mayo Clinic Proceedings, 2008, 83, 1095-1100.	1.4	148
8	Predicting Outcomes in Idiopathic Pulmonary Fibrosis Using Automated Computed Tomographic Analysis. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 767-776.	2.5	140
9	Quantitative Computed Tomography Imaging of Interstitial Lung Diseases. Journal of Thoracic Imaging, 2013, 28, 298-307.	0.8	134
10	Predicting outcomes in rheumatoid arthritis related interstitial lung disease. European Respiratory Journal, 2019, 53, 1800869.	3.1	121
11	Sodium Bicarbonate is Associated with an Increased Incidence of Contrast Nephropathy. Clinical Journal of the American Society of Nephrology: CJASN, 2008, 3, 10-18.	2.2	120
12	High Resolution Multidetector CT-Aided Tissue Analysis and Quantification of Lung Fibrosis. Academic Radiology, 2007, 14, 772-787.	1.3	117
13	Computed Tomographic Biomarkers in Idiopathic Pulmonary Fibrosis. The Future of Quantitative Analysis. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 12-21.	2.5	102
14	lmmune signatures underlying post-acute COVID-19 lung sequelae. Science Immunology, 2021, 6, eabk1741.	5.6	99
15	Are Airflow Obstruction and Radiographic Evidence of Emphysema Risk Factors for Lung Cancer?. Chest, 2010, 138, 1295-1302.	0.4	97
16	Quantitative CT Analysis of Diffuse Lung Disease. Radiographics, 2020, 40, 28-43.	1.4	90
17	Clinical Significance of Radiologic Characterizations in COPD. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2009, 6, 459-467.	0.7	85
18	lodixanol Versus Low-Osmolar Contrast Media for Prevention of Contrast Induced Nephropathy. Circulation: Cardiovascular Interventions, 2010, 3, 351-358.	1.4	85

#	Article	IF	CITATIONS
19	Methods and Challenges in Quantitative Imaging Biomarker Development. Academic Radiology, 2015, 22, 25-32.	1.3	80
20	Clinical Utility of Quantitative Imaging. Academic Radiology, 2015, 22, 33-49.	1.3	79
21	Collapsibility of Lung Volume by Paired Inspiratory and Expiratory CT Scans. Academic Radiology, 2010, 17, 489-495.	1.3	76
22	Recombinant human pentraxin-2 therapy in patients with idiopathic pulmonary fibrosis: safety, pharmacokinetics and exploratory efficacy. European Respiratory Journal, 2016, 47, 889-897.	3.1	75
23	Functional and prognostic effects when emphysema complicates idiopathic pulmonary fibrosis. European Respiratory Journal, 2017, 50, 1700379.	3.1	71
24	Evaluation of computer-based computer tomography stratification against outcome models in connective tissue disease-related interstitial lung disease: a patient outcome study. BMC Medicine, 2016, 14, 190.	2.3	69
25	Airway Count and Emphysema Assessed by Chest CT Imaging Predicts Clinical Outcome in Smokers. Chest, 2010, 138, 880-887.	0.4	68
26	Noninvasive Characterization of the Histopathologic Features of Pulmonary Nodules of the Lung Adenocarcinoma Spectrum using Computer-Aided Nodule Assessment and Risk Yield (CANARY)—A Pilot Study. Journal of Thoracic Oncology, 2013, 8, 452-460.	0.5	65
27	Serial automated quantitative CT analysis in idiopathic pulmonary fibrosis: functional correlations and comparison with changes in visual CT scores. European Radiology, 2018, 28, 1318-1327.	2.3	61
28	Computer-Aided Detection and Diagnosis at the Start of the Third Millennium. Journal of Digital Imaging, 2002, 15, 59-68.	1.6	60
29	Statin as a novel pharmacotherapy of pulmonary alveolar proteinosis. Nature Communications, 2018, 9, 3127.	5.8	60
30	Development and validation of a radiological diagnosis model for hypersensitivity pneumonitis. European Respiratory Journal, 2018, 52, 1800443.	3.1	55
31	Experimental and quantitative imaging techniques in interstitial lung disease. Thorax, 2019, 74, 611-619.	2.7	53
32	Chronic hypersensitivity pneumonitis: identification of key prognostic determinants using automated CT analysis. BMC Pulmonary Medicine, 2017, 17, 81.	0.8	52
33	Relationship of emphysema and airway disease assessed by CT to exercise capacity in COPD. Respiratory Medicine, 2010, 104, 1145-1151.	1.3	50
34	Noninvasive Computed Tomography–based Risk Stratification of Lung Adenocarcinomas in the National Lung Screening Trial. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 737-744.	2.5	50
35	Pulmonary Nodule Characterization, Including Computer Analysis and Quantitative Features. Journal of Thoracic Imaging, 2015, 30, 139-156.	0.8	50
36	Understanding interpretive errors in radiologists learning computed tomography colonography1. Academic Radiology, 2004, 11, 750-756.	1.3	48

#	Article	IF	CITATIONS
37	An Ultrasound Surface Wave Technique for Assessing Skin and Lung Diseases. Ultrasound in Medicine and Biology, 2018, 44, 321-331.	0.7	46
38	The Relationship between Small Pulmonary Vascular Alteration and Aortic Atherosclerosis in Chronic Obstructive Pulmonary Disease. Academic Radiology, 2011, 18, 40-46.	1.3	44
39	Predictors of idiopathic pulmonary fibrosis in absence of radiologic honeycombing: A cross sectional analysis in ILD patients undergoing lung tissue sampling. Respiratory Medicine, 2016, 118, 88-95.	1.3	44
40	Unclassifiable-interstitial lung disease: Outcome prediction using CT and functional indices. Respiratory Medicine, 2017, 130, 43-51.	1.3	44
41	Spirometric assessment of emphysema presence and severity as measured by quantitative CT and CT-based radiomics in COPD. Respiratory Research, 2019, 20, 101.	1.4	43
42	Correlation of Regional Emphysema and Lung Cancer: A Lung Tissue Research Consortium-Based Study. Journal of Thoracic Oncology, 2014, 9, 639-645.	0.5	42
43	Iron deposition and increased alveolar septal capillary density in nonfibrotic lung tissue are associated with pulmonary hypertension in idiopathic pulmonary fibrosis. Respiratory Research, 2010, 11, 37.	1.4	41
44	Gender influences health-related Quality of Life in IPF. Respiratory Medicine, 2010, 104, 724-730.	1.3	38
45	Noninvasive Risk Stratification of Lung Adenocarcinoma using Quantitative Computed Tomography. Journal of Thoracic Oncology, 2014, 9, 1698-1703.	0.5	35
46	Automated Computed Tomography analysis in the assessment of Idiopathic Pulmonary Fibrosis severity and progression. European Journal of Radiology, 2020, 124, 108852.	1.2	35
47	Implications of the updated Lung CT Screening Reporting and Data System (Lung-RADS version 1.1) for lung cancer screening. Journal of Thoracic Disease, 2020, 12, 6966-6977.	0.6	34
48	Novel high-resolution computed tomography-based radiomic classifier for screen-identified pulmonary nodules in the National Lung Screening Trial. PLoS ONE, 2018, 13, e0196910.	1.1	32
49	Combined pulmonary fibrosis and emphysema as a clinicoradiologic entity: Characterization of presenting lung fibrosis and implications for survival. Respiratory Medicine, 2019, 146, 106-112.	1.3	32
50	Likelihood of pulmonary hypertension in patients with idiopathic pulmonary fibrosis and emphysema. Respirology, 2018, 23, 593-599.	1.3	29
51	Lung US Surface Wave Elastography in Interstitial Lung Disease Staging. Radiology, 2019, 291, 479-484.	3.6	29
52	Intrathoracic Tracheal Volume and Collapsibility on Inspiratory and End-expiratory CT Scans. Academic Radiology, 2011, 18, 299-305.	1.3	28
53	Assessment of Interstitial Lung Disease Using Lung Ultrasound Surface Wave Elastography. Journal of Thoracic Imaging, 2019, 34, 313-319.	0.8	28
54	Do we need to see to believe?—radiomics for lung nodule classification and lung cancer risk stratification. Journal of Thoracic Disease, 2020, 12, 3303-3316.	0.6	27

#	Article	IF	CITATIONS
55	Quantitative Stratification of Diffuse Parenchymal Lung Diseases. PLoS ONE, 2014, 9, e93229.	1.1	27
56	ROC Study of Four LCD Displays Under Typical Medical Center Lighting Conditions. Journal of Digital Imaging, 2006, 19, 30-40.	1.6	25
57	Optimizing non-local means for denoising low dose CT. , 2009, , .		25
58	Evaluation of visual and computer-based CT analysis for the identification of functional patterns of obstruction and restriction in hypersensitivity pneumonitis. Respirology, 2017, 22, 1585-1591.	1.3	25
59	Clinical correlations of immunophenotypic variations and the presence of trisomy 12 in B-cell chronic lymphocytic leukemia. Cancer Genetics and Cytogenetics, 1997, 95, 173-177.	1.0	24
60	Putting artificial intelligence (AI) on the spot: machine learning evaluation of pulmonary nodules. Journal of Thoracic Disease, 2020, 12, 6954-6965.	0.6	23
61	Kurtosis and Skewness of Density Histograms on Inspiratory and Expiratory CT Scans in Smokers. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2011, 8, 13-20.	0.7	22
62	Longitudinal prediction of outcome in idiopathic pulmonary fibrosis using automated CT analysis. European Respiratory Journal, 2019, 54, 1802341.	3.1	22
63	Syntactic and semantic errors in radiology reports associated with speech recognition software. Health Informatics Journal, 2017, 23, 3-13.	1.1	21
64	Novel Assessment of Interstitial Lung Disease Using the "Computer-Aided Lung Informatics for Pathology Evaluation and Rating―(CALIPER) Software System in Idiopathic Inflammatory Myopathies. Lung, 2017, 195, 545-552.	1.4	20
65	Computed Tomography–Based Score Indicative of Lung Cancer Aggression (SILA) Predicts the Degree of Histologic Tissue Invasion and Patient Survival in Lung Adenocarcinoma Spectrum. Journal of Thoracic Oncology, 2019, 14, 1419-1429.	0.5	20
66	Artificial Intelligence in Radiology: A Call for Thoughtful Application. Clinical and Translational Science, 2020, 13, 216-218.	1.5	19
67	Stratification of long-term outcome in stable idiopathic pulmonary fibrosis by combining longitudinal computed tomography and forced vital capacity. European Radiology, 2020, 30, 2669-2679.	2.3	19
68	Short-term Automated Quantification of Radiologic Changes in the Characterization of Idiopathic Pulmonary Fibrosis Versus Nonspecific Interstitial Pneumonia and Prediction of Long-term Survival. Journal of Thoracic Imaging, 2018, 33, 124-131.	0.8	18
69	Validation of the BRODERS classifier (Benign <i>versus</i> aggRessive nODule Evaluation using) Tj ETQq1 1 0.78 European Respiratory Journal, 2021, 57, 2002485.	4314 rgBT 3.1	/Overlock 10 16
70	Reviews in Radiology Informatics: Establishing a Core Informatics Curriculum. Journal of Digital Imaging, 2004, 17, 244-248.	1.6	15
71	Comparison of Total Lung Capacity Determined by Plethysmography With Computed Tomographic Segmentation Using CALIPER. Journal of Thoracic Imaging, 2017, 32, 101-106.	0.8	15
72	Correlation of pulmonary function and usual interstitial pneumonia computed tomography patterns in idiopathic pulmonary fibrosis. Respiratory Medicine, 2017, 129, 152-157.	1.3	15

#	Article	IF	CITATIONS
73	Mycophenolate mofetil for scleroderma-related interstitial lung disease: A real world experience. PLoS ONE, 2017, 12, e0177107.	1.1	15
74	SCAR R&D Symposium 2003: Comparing the Efficacy of 5-MP CRT Versus 3-MP LCD in the Evaluation of Interstitial Lung Disease. Journal of Digital Imaging, 2004, 17, 149-157.	1.6	14
75	Automated CT Analysis of Major Forms of Interstitial Lung Disease. Journal of Clinical Medicine, 2020, 9, 3776.	1.0	14
76	Sensitivity of Thoracic Digital Tomosynthesis (DTS) for the Identification of Lung Nodules. Journal of Digital Imaging, 2016, 29, 141-147.	1.6	13
77	Computer-Aided Nodule Assessment and Risk Yield (CANARY) may facilitate non-invasive prediction of EGFR mutation status in lung adenocarcinomas. Scientific Reports, 2017, 7, 17620.	1.6	13
78	Quantitative analysis of lung sounds for monitoring idiopathic pulmonary fibrosis:Âa prospective pilot study. European Respiratory Journal, 2019, 53, 1802093.	3.1	12
79	Selection of Appropriate Computed Tomographic Image Reconstruction Algorithms for a Quantitative Multicenter Trial of Diffuse Lung Disease. Journal of Computer Assisted Tomography, 2008, 32, 233-237.	0.5	11
80	Laterality Errors in Radiology Reports Generated With and Without Voice Recognition Software: Frequency and Clinical Significance. Journal of the American College of Radiology, 2013, 10, 538-543.	0.9	11
81	Automated computed tomography quantification of fibrosis predicts prognosis in combined pulmonary fibrosis and emphysema in a real-world setting: a single-centre, retrospective study. Respiratory Research, 2020, 21, 275.	1.4	11
82	Predicting lung mass density of patients with interstitial lung disease and healthy subjects using deep neural network and lung ultrasound surface wave elastography. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 104, 103682.	1.5	11
83	Differentiation of Idiopathic Pulmonary Fibrosis from Connective Tissue Disease-Related Interstitial Lung Disease Using Quantitative Imaging. Journal of Clinical Medicine, 2021, 10, 2663.	1.0	11
84	Computer-Aided Nodule Assessment and Risk Yield Risk Management of Adenocarcinoma: The Future of Imaging?. Seminars in Thoracic and Cardiovascular Surgery, 2016, 28, 120-126.	0.4	10
85	Cicatricial organizing pneumonia: a clinicopathologic and radiologic study on a cohort diagnosed by surgical lung biopsy at a single institution. Human Pathology, 2020, 101, 58-63.	1.1	10
86	Lung mass density prediction using machine learning based on ultrasound surface wave elastography and pulmonary function testing. Journal of the Acoustical Society of America, 2021, 149, 1318-1323.	0.5	10
87	Vessel-related structures predict UIP pathology in those with a non-IPF pattern on CT. European Radiology, 2021, 31, 7295-7302.	2.3	10
88	The Electronic Imaging Technology Specialist: The Role of a New Radiology Subspecialty for the 21st Century. Journal of Digital Imaging, 2002, 15, 184-188.	1.6	9
89	Processing of CT images for analysis of diffuse lung disease in the lung tissue research consortium. Proceedings of SPIE, 2008, , .	0.8	9
90	Computer Aided Nodule Analysis and Risk Yield (CANARY) characterization of adenocarcinoma: radiologic biopsy, risk stratification and future directions. Translational Lung Cancer Research, 2018, 7, 313-326.	1.3	9

BRIAN J BARTHOLMAI

#	Article	IF	CITATIONS
91	Assessing the inter-observer variability of Computer-Aided Nodule Assessment and Risk Yield (CANARY) to characterize lung adenocarcinomas. PLoS ONE, 2018, 13, e0198118.	1.1	9
92	Radiomics-based Management of Indeterminate Lung Nodules? Are We There Yet?. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 165-167.	2.5	8
93	Nonlinear histogram binning for quantitative analysis of lung tissue fibrosis in high-resolution CT data. , 2007, , .		7
94	Syntactic and Semantic Errors in Radiology Reports Associated With Speech Recognition Software. Studies in Health Technology and Informatics, 2015, 216, 922.	0.2	7
95	Effect of Automated Image Registration on Radiologist Interpretation. Journal of Digital Imaging, 2007, 20, 105-113.	1.6	6
96	Automated Parenchymal Pattern Analysis of Treatment Responses in Pulmonary Alveolar Proteinosis. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1151-1152.	2.5	6
97	A quantitative method for measuring the changes of lung surface wave speed for assessing disease progression of interstitial lung disease. Ultrasound in Medicine and Biology, 2019, 45, 741-748.	0.7	6
98	Lung vessel volume evaluated with CALIPER software is an independent predictor of mortality in COVID-19 patients: a multicentric retrospective analysis. European Radiology, 2022, 32, 4314-4323.	2.3	5
99	Assessment of interstitial lung disease using lung ultrasound surface wave elastography. , 2017, , .		4
100	Breathe New Life Into Your Chest CT Exams: Using Advanced Acquisition and Postprocessing Techniques. Current Problems in Diagnostic Radiology, 2019, 48, 152-160.	0.6	4
101	COVID-19: The Importance of Multidisciplinary Approach. Academic Radiology, 2020, 27, 1327-1328.	1.3	4
102	Referenceless Stratification of Parenchymal Lung Abnormalities. Lecture Notes in Computer Science, 2011, 14, 223-230.	1.0	4
103	3D MORPHOLOGICAL ANALYSIS OF LUNG PATHOLOGY. , 2007, , .		3
104	Imaging Informatics: Challenges in Multi-site Imaging Trials. Journal of Digital Imaging, 2011, 24, 151-159.	1.6	3
105	Automated segmentation of the lungs from high resolution CT images for quantitative study of chronic obstructive pulmonary diseases. , 2005, 5744, 5.		1
106	High resolution multidetector CT aided tissue analysis and quantification of lung fibrosis. , 2006, 6143, 931.		1
107	Optimization of CT image reconstruction algorithms for the lung tissue research consortium (LTRC). , 2006, 6143, 942.		1
108	Quantitative image analytics for stratified pulmonary medicine. , 2012, , .		1

#	Article	IF	CITATIONS
109	Active Relearning for Robust Supervised Training of Emphysema Patterns. Journal of Digital Imaging, 2014, 27, 548-555.	1.6	1
110	Appreciating the shades of gray: a case for Computer-Aided Nodule Assessment and Risk Yield (CANARY)-based risk stratification of lung adenocarcinomas. Journal of Thoracic Disease, 2016, 8, E1438-E1440.	0.6	1
111	Quantitative assessment of scleroderma using ultrasound surface wave elastography. , 2017, , .		1
112	While size matters—advanced "Radiomics―remain promising for the clinical management of ground glass opacities. Journal of Thoracic Disease, 2017, 9, 3568-3571.	0.6	1
113	Evaluation of Computer-Aided Nodule Assessment and Risk Yield (CANARY) in Korean patients for prediction of invasiveness of ground-glass opacity nodule. PLoS ONE, 2021, 16, e0253204.	1.1	1
114	Pulmonary Low Attenuation Areas on CT in ANCA-associated Vasculitis: A quantitative and semi-quantitative analysis correlated with pulmonary function testing for obstructive airway disease. Sarcoidosis Vasculitis and Diffuse Lung Diseases, 2020, 37, e2020016.	0.2	1
115	Detail-on-demand visualization for lean understanding of lung abnormalities. Studies in Health Technology and Informatics, 2012, 173, 362-8.	0.2	1
116	Evaluation of Interstitial Lung Disease in Idiopathic Inflammatory Myopathies Through Semiquantitative and Quantitative Analysis of Lung Computed Tomography. Journal of Thoracic Imaging, 2022, 37, 344-351.	0.8	1
117	Parametric modeling for quantitative analysis of pulmonary structure to function relationships. , 2005, 5744, 184.		0
118	Active relearning for robust supervised classification of pulmonary emphysema. Proceedings of SPIE, 2012, , .	0.8	0
119	Automating the expert consensus paradigm for robust lung tissue classification. , 2012, , .		0
120	Effect of denoising on supervised lung parenchymal clusters. , 2012, , .		0
121	Quantitative consensus of supervised learners for diffuse lung parenchymal HRCT patterns. Proceedings of SPIE, 2013, , .	0.8	0
122	Sex Differences in the Diameter of Extraâ€parenchymal Airways in a Large Cohort of Healthy Adult Nonâ€smokers. FASEB Journal, 2019, 33, 735.1.	0.2	0